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TL;DR

• While mini-batch SGD is the de-facto method to solve problems with finite sum
structure; even a single grossly corrupted sample can lead SGD to an arbitrarily
poor solution.

• The vulnerability of SGD is often attributed to the gradient aggregation using
Mean(·) which has 0 breakdown point. This motivates replacing the gradient
aggregation with robust estimators like geometric median (Gm), which achieves
the optimal breakdown point of 1

2.

• Despite the strong robustness guarantees of Gm, all the known methods to compute
an approximate Gm solution, scale poorly with the dimension of the problem (d)
making it prohibitive in high dimensional settings.

• We propose BGmD (Algorithm 1), a method for robust optimization in high di-
mensions, which is significantly more efficient than the standard Gm-SGD method
but is still able to maintain the optimal breakdown point.

Definition 1 (Gross Corruption Model). Given 0 ≤ ψ < 1
2 and a distribution

family D on Rd the adversary operates as follows: n samples are drawn from
D ∈ D. The adversary is allowed to inspect all the samples and replace up to ψn
samples with arbitrary points. This implies that α := |B|/|G| < 1, where B and G
are the sets of corrupt and good samples.

Definition 2 (Breakdown Point). Breakdown point η of an estimator is the smallest
fraction of contamination that must be introduced to cause an estimator to break
e.g. an estimator has optimal breakdown point 1/2 if robust ∀ α < 1 gross
corruption.

Definition 3 (Geometric Median).

x∗ = Gm({xi}) = argmin
y∈X

[
g(x) :=

n∑
i=1

∥y − xi∥
]

(1)

We call a point x ∈ Rd an ϵ-accurate geometric median if g(x) ≤ (1 + ϵ)g(x∗).

(Overview of BGmD). At a high level, at each iteration BGmD selects a block of
0 < k ≤ d important coordinates of the stochastic gradients using Algorithm 2. The
remaining (d−k) dimensions are discarded and gradient aggregation happens only along
these selected k directions. While descending along only a small subset of k coordinates
at each iteration significantly improves the per iteration computational cost (Lemma 2),
a smaller value of k would also imply larger gradient information loss a smaller ξ (Lemma
1). Te mitigate this we propose a memory mechanism: Throughout training, we keep
track of the residual error ∥Gt − Ck(Gt)∥ incurred due to ignoring (d− k) dimensions
via m̂t ∈ Rd that is appropriately added back in the subsequent iterations.

Algorithm 1 Block Gm Descent (BGmD)

Initialize: estimate: x0 ∈ Rd, step-size: γ, memory: m̂0 = 0, Block Coordinate Selection operator:

Ck(·), Geometric Median operator: Gm(·)
epochs t = 0, . . . , until convergence select samples Dt = {i1, . . . , ib}
obtain: g

(i)
t := ∇fi(xt), ∀i ∈ Dt (back-propagation)

Let Gt ∈ Rb×d s.t. each row Gt[i, :] = g
(i)
t

Gt[i, :]← γGt[i, :] + m̂t ∀i ∈ [b] (add memory)

∆t := Ck(Gt) ∈ Rb×k (subset k dim via Algo. 2)

Mt+1 = Gt −∆t (compute residuals)

m̂t+1 =
1
b

∑
0≤i≤bMt+1[i, :] (update memory)

g̃t := Gm(∆t) (robust aggregation in Rk)

xt+1 := xt − g̃t (parameter update)

Algorithm 2 Block Coordinate Selection Strategy

Input: Gt ∈ Rn×d, k

coordinates j = 0, . . . , d-1 sj ← ∥Gt[:, j]∥2 (norm along each dimension) Sample set Ik of k dimensions

with probabilities proportional to sj
Ck(Gt)[i, j ∈ Ik] = Gt[i, j], Ck(Gt)[i, j /∈ Ik] = 0

Return: Ck(Gt)

Convergence Guarantees

Lemma 1 (Contraction Mapping). Algorithm 2 yields a contraction approxima-
tion E

[
∥Ck(Gt)−Gt∥2|Gt

]
≤ (1− ξ)∥Gt∥2, k

d ≤ ξ ≤ 1.

Assumption 1 (Unbiased Oracle - Bounded Variance).

Ez∼Di[gi(x, z)] = ∇fi(x) (2)

Ez∼Di∥∇Fi(x, z)∥
2 ≤ σ2 (3)

Assumption 2 (Smoothness).

fi(x) ≤ fi(y) + ⟨x− y,∇fi(y)⟩ +
L

2
∥x− y∥2 (4)

Assumption 3 (Polyak-Lojasiewicz Condition).

∥∇f (x)∥2 ≥ 2µ(f (x)− f (x∗)), µ > 0 (5)

Theorem 1 (Smooth Non-convex). Suppose Assumption 1-2 hold. Run Algo-
rithm 1 with compression factor ξ (Lemma 1), learning rate γt = 1/2L and
ϵ−approximate Gm(·) in presence of α−corruption (Definition 1) for T iter-
ations, then for any τ ∈ [T ] sampled uniformly at random:

E∥∇f (xτ)∥2 = O

(
LR0

T
+

σ2ξ−2

(1− α)2
+

L2ϵ2

|G|2(1− α)2

)
Theorem 2 (Non-convex under PLC). Suppose Assumption 1-3 hold. Then,
after T iterations BGmd with compression factor ξ, learning rate γt = 1/4L
and ϵ−approximate Gm(·) oracle in presence of α−corruption satisfies:

E∥x̂T − x∗∥2 = O

(
LR0

µ2

[
1− µ

8L

]T
+

σ2ξ−2

µ2(1− α)2
+

L2ϵ2

µ2|G|2(1− α)2

)

where, x̂T := 1
WT

∑T−1
t=0 wtxt, WT :=

∑T−1
t=0 wt with weights wt := (1− µ

8L)
−(t+1).

Empirical Evidence

Lemma 1 (Linear Speedup). For, β ≤ O(1/F − bϵ2), given an ϵ- approximate
Gm oracle, Algorithm 1 achieves a factor F speedup over Gm-SGD.

(a) No corruption (b) 20 % corruption (c) 40 % corruption

Robustness to Feature Corruption (Accuracy over clock time)

We observe with extensive experiments under different sources and models of cor-
ruption - Feature Corruption ; Gradient Corruption; Label Corruption; Gm based
methods are indeed superior while standard SGD or CmD can be significantly
inaccurate. By judiciously choosing k, BGmD can be more efficient than GmD,
often resulting in more than 3x speedup. Despite using small β ≤ 0.15 in all
our experiments, it retains high generalization performance emphasizing the role of
memory mechanism.


