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BACKGROUND

• Graph Signal Processing

➢ Modeling network processes by exploiting the underlying graph structures

➢ Applications: sensor and social networks, transportation systems, gene 

regulatory networks

• Sampling and Reconstruction

➢ Selecting a small representative subset of graph nodes

➢ Applications: constrained sensing in sensor networks, data summarization

• Notation and model

: signal on graph    with N nodes,                          Sampling matrix     

: adjacency matrix of 

: basis of the graph signal (here, eigenvectors of the Laplacian matrix L)

: graph Fourier transform, k-sparse (bandlimited), support 

: submatrix of      containing columns indexed by 

: measurement model, n bounded noise with 

• Goal: finding a good sampled signal              for perfect reconstruction:

• Prior work [1] and [2] based on using uniform and leverage score random 

sampling : nonzero probability of failure, require more than k samples

• Our approach: Iterative scheme based on orthogonal matching pursuit (OMP)

• Support identification from historical observations of the graph signal

SUPPORT IDENTIFICATION

CONCLUSION
• Our contributions:

➢ Iterative sampling of graph signals in non-Bayesian setting with 

performance guarantees

➢ Extension to unknown support scenario: support identification from 

historical templates of the graph signal

➢ See our extended article “Accelerated sampling of bandlimited graph 

signals” in arXiv: https://arxiv.org/abs/1807.07222

• Future work: Joint support identification and sampling

• Proof’s remarks:

➢ An inductive argument

➢ Iterative selection of linearly independent 

➢ Zero residual norm only after the last iteration

Sampling under bounded noise 

• Assumption:  

• Explicit bound on reconstruction error

• Guaranteed existence of inverse matrices under Algorithm 1

• Preserving statistical characteristics (e.g. whiteness) of effective noise

[1] S. Chen et al., “Signal recovery on graphs: Fundamental limits of sampling strategies,” Dec 2016.

[2] G. Puy et al., “Random sampling of bandlimited signals on graphs,” Mar. 2018.
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RESULTS

ITERATIVE SELECTION SAMPLING
• Necessary and sufficient condition for perfect recovery: invertibility of

• Make it invertible by construction: 

➢ select a residual node             (to be excluded from the sampling set)

➢ suggestion for residual: 

➢ iteratively identify a sampling node and construct sampling set 

➢ : the residual vector initialized at       

➢ : the projection operator to complement of the 

subspace spanned by          (rows of     indexed by )

Theorem 1:

Let     be the sampling set constructed by Algorithm 1 and let be     the 

corresponding sampling matrix such that            . Then, the matrix        is 

invertible.

Theorem 2

Assume    is orthogonal. Under bounded noise assumption, the GFTs     and 

support     are identifiable if

• Perfect support identification in the absence of noise with P = 1

• Easier satisfiability of the established sufficient condition for larger P  

• Support recovery given P historical templates                                           with 

shared support from noisy observations 

• Equivalent task: estimating sparse GFTs

• Proposed optimization based on block sparsity of    : 

• Closed-form solution via row-wise    norm thresholding on 

PERFORMANCE ANALYSIS

• Simulated Erdos-Renyi

graphs with N = 1000

• AWGN with 20dB power

• Various degrees of 

connectivity (p)

• Support recovery error vs. P, 

number of signal templates, 

(i.e. observations)

• Monotonically better 

accuracy

• Real graph of economy 

sectors with N = 64

• Disaggregated GDP is an 

approximately bandlimited 

graph signal

• Recovery error vs. various 

sampling set sizes

• Achieved recovery error: 

1.32%

• Simulated Erdos-Renyi graphs 

with N = 1000 and p = 0.1

• Noisy samples with

• Recovery error (error to signal 

energy) 

• Success rate (invertibility of

)

• Proposed scheme guarantees perfect recovery in noiseless case for all 

connected graphs with general structures and with normal adjacency.


