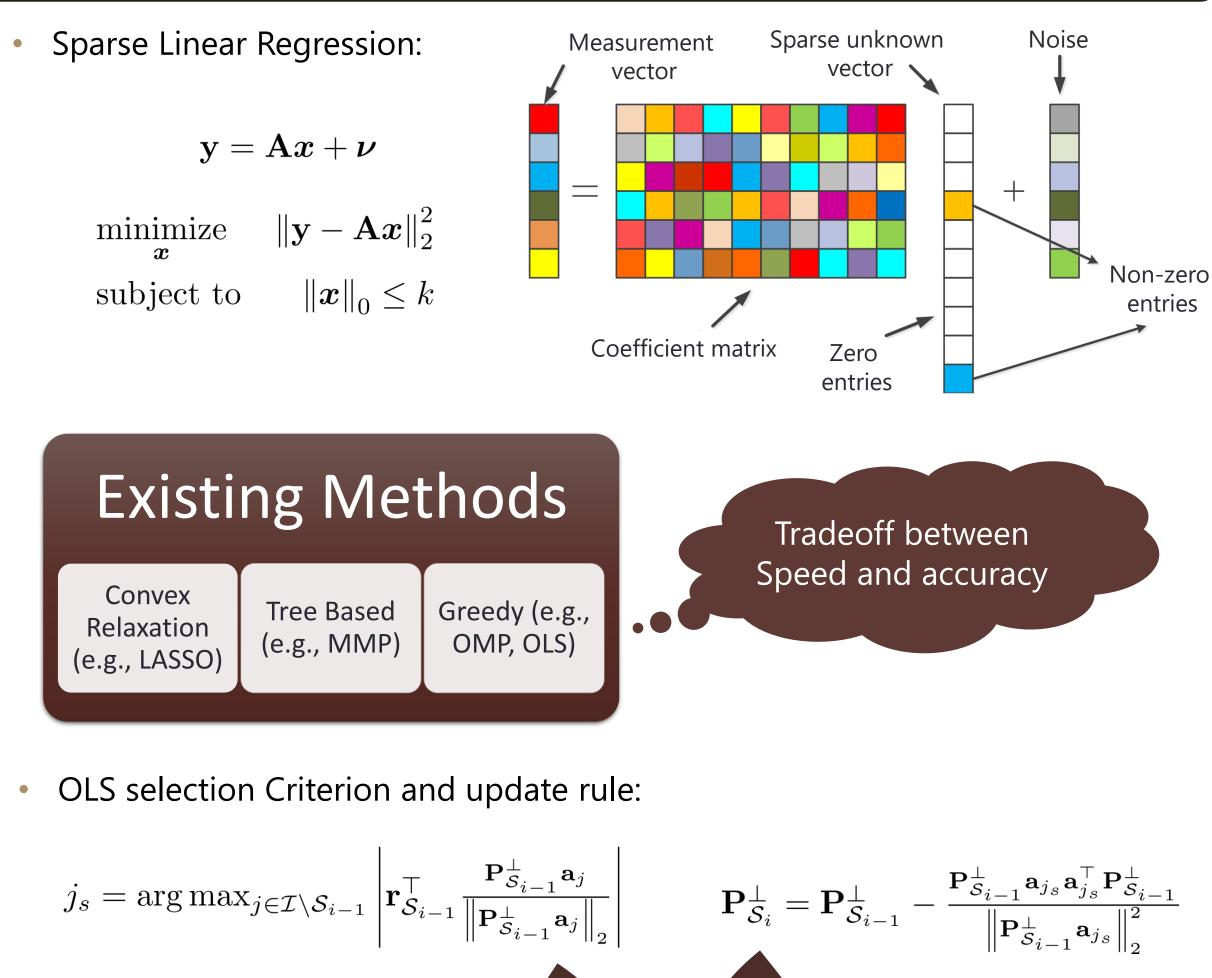
## **RECOVERY OF SPARSE SIGNALS VIA BRANCH AND BOUND LEAST-SQUARES**



 $\mathbf{r}_{\mathcal{S}_i} = \mathbf{r}_{\mathcal{S}_{i-1}} - \mathbf{u}_{i+1}$ 

 $\mathbf{u}_{i+1} = \mathbf{q}_{j_s}$ 

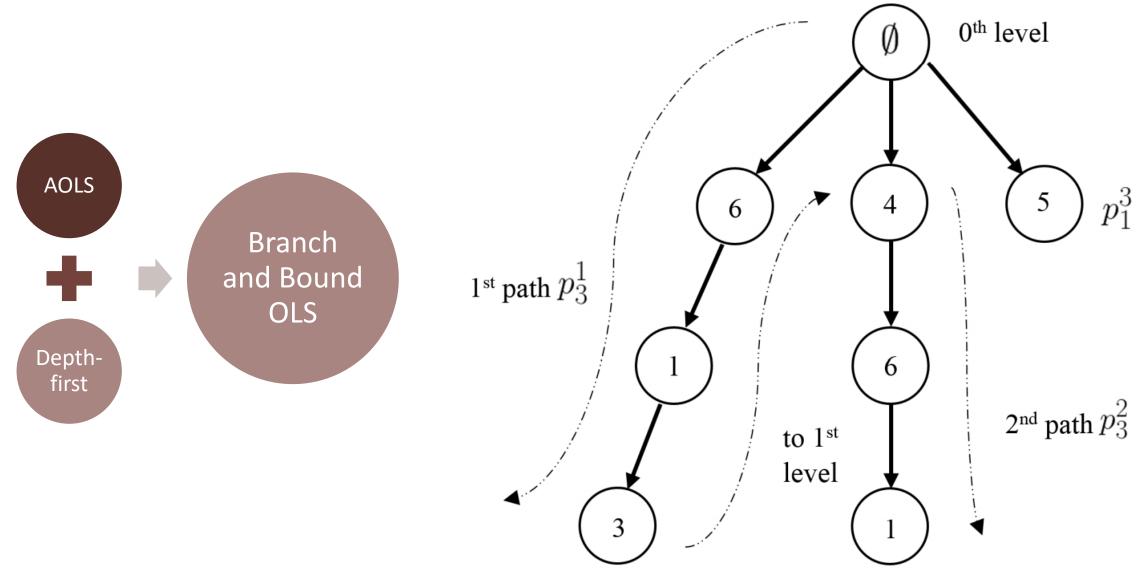
### BACKGROUND



• Accelerated OLS (AOLS):  $\mathbf{a}_j \leftarrow \mathbf{a}_j - \sum_{l=1}^i \frac{\mathbf{a}_j^\top \mathbf{u}_l}{\|\mathbf{u}_l\|_2^2} \mathbf{u}_l$  $\mathbf{q}_j = \left(\mathbf{a}_j^ op \mathbf{r}_i / \|\mathbf{a}_j\|_2^2 
ight) \mathbf{a}_j$  $j_s = \operatorname{argmax}_{j \in \mathcal{I} \setminus \mathcal{S}_i} \left\| \mathbf{q}_j \right\|_2$ 

# BRANCH AND BOUND LEAST-SQUARES

- Construct a tree whose nodes represent columns of coefficient matrix
- A branch-and-bound search to traverse the tree in a depth-first manner
- Use a schedule  $\mathbf{L} = [L_1, \ldots, L_k]$  to control the size of the search space
- Employ AOLS expressions to construct the tree



Abolfazl Hashemi and Haris Vikalo Department of Electrical and Computer Engineering, University of Texas at Austin

## BRANCH AND BOUND LEAST-SQUARES

**Algorithm 1** Branch and Bound Least-Squares (BBLS)

**Input:** y, A, sparsity level k, threshold  $\epsilon$ , schedule L, max number of paths  $N_p$ 

**Output:** recovered support  $\hat{S}$ , estimated signal  $\hat{x}$ 

- 1. (Initialize)  $\mathcal{S} = \emptyset$ ,  $\mathbf{r}_{p_0^{\ell}} = \mathbf{y}$ ,  $r_{\ell_2} = \|\mathbf{y}\|_2$ , i = 1,  $\ell = 1$ .
- 2. (Bounding) Let  $\mathbf{S}_i = []$  and  $l_i = 0$ ,

for  $j \in \mathcal{I} \backslash \mathcal{S}$  do

$$\mathbf{a}_j \leftarrow \mathbf{a}_j - \mathbb{I}(i > 2) \frac{\mathbf{a}_j^\top \mathbf{u}_l}{\|\mathbf{u}_l\|_2^2} \mathbf{u}_l, \ \mathbf{q}_j = \frac{\mathbf{a}_j^\top \mathbf{r}_{i-1}}{\|\mathbf{a}_j\|_2^2} \mathbf{a}_j$$
end for

- Select  $\mathbf{S}_i = [j_{s_1}, \dots, j_{s_{L_i}}]$  corresponding to  $L_i$  largest terms  $\|\mathbf{q}_j\|_2$ 3. (Branching)  $l_i = l_i + 1$ . If  $l_i > L_i$  go to 4, else  $S = S \cup \{\mathbf{S}_i(l_i)\}$ ,  $\mathbf{u}_i = \mathbf{q}_{j_{s_{l_i}}}$ ,  $\mathbf{r}_{p_i^\ell} = \mathbf{r}_{p_{i-1}^\ell} - \mathbf{u}_i$ , go to 5.
- 4. (Decrease i) If i = 1 go to 7, else  $S = S \setminus \{S_i(l_i)\}, i = i 1$ , and go to 2. 5. (Increase i) If i = k go to 6, else i = i + 1 and go to 2.
- 6. (Solution found) Save the  $\ell^{th}$  path  $p_k^\ell = S$  and its objective value  $\|\mathbf{r}_{p_k^\ell}\|_2$ . If

 $\left\|\mathbf{r}_{p_k^\ell}\right\|_2 < r_{\ell_2} \text{ update } r_{\ell_2} = \left\|\mathbf{r}_{p_k^\ell}\right\|_2. \ \ell = \ell + 1, \text{ if } \ell > N_p \text{ or } r_{\ell_2} < \epsilon \text{ go to 7, else}$ go to 3

7. Terminate the algorithm. Return the path  $p_k^{\ell_*}$  with minimum residual norm as  $\hat{\mathcal{S}}$ , and the estimate  $\hat{x} = \mathbf{A}^{\dagger}_{\hat{\mathbf{S}}} \mathbf{y}$ .

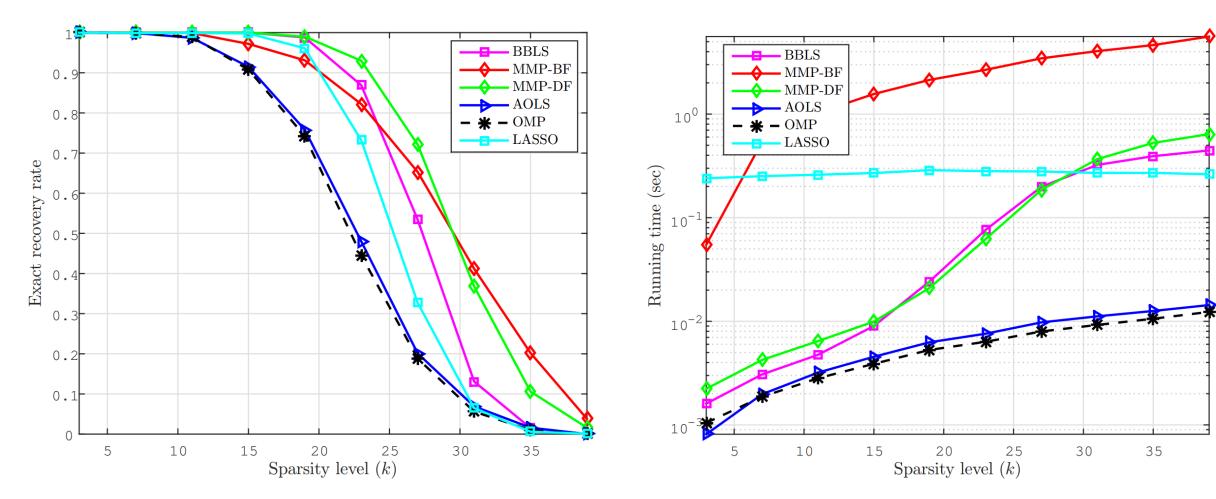
#### PERFORMANCE ANALYSIS

- Let  $0 < \epsilon < 1$  and  $0 < \delta < 1$  be universal constants, and  $c_0(\epsilon) = \frac{\epsilon^2}{6}(1-\epsilon)$
- Assume  $\mathbf{A} \sim \mathcal{N}(0, 1/n)$  or  $\mathbf{A} \sim \mathcal{B}(\frac{1}{2}, \pm \frac{1}{\sqrt{n}})$ , and noiseless measurements
- If  $p_i^{\ell} = \{s_1^{\ell}, \dots, s_i^{\ell}\} \subset S_{true}$ , then, at least one among  $L_{i+1}$  children of  $s_i^{\ell}$  is in  $\mathcal{S}_{true}$  with probability

$$p \ge \left(1 - 2e^{-(n-i)c_0(\epsilon)}\right)^2 \left(1 - 2\left(\frac{12}{\delta}\right)^k e^{-nc_0(\frac{\delta}{2})}\right) \left(1 - 2e^{-\frac{n}{k-i}\frac{1-\epsilon}{1+\epsilon}(1-\delta)^2}\right)^{m-k}$$

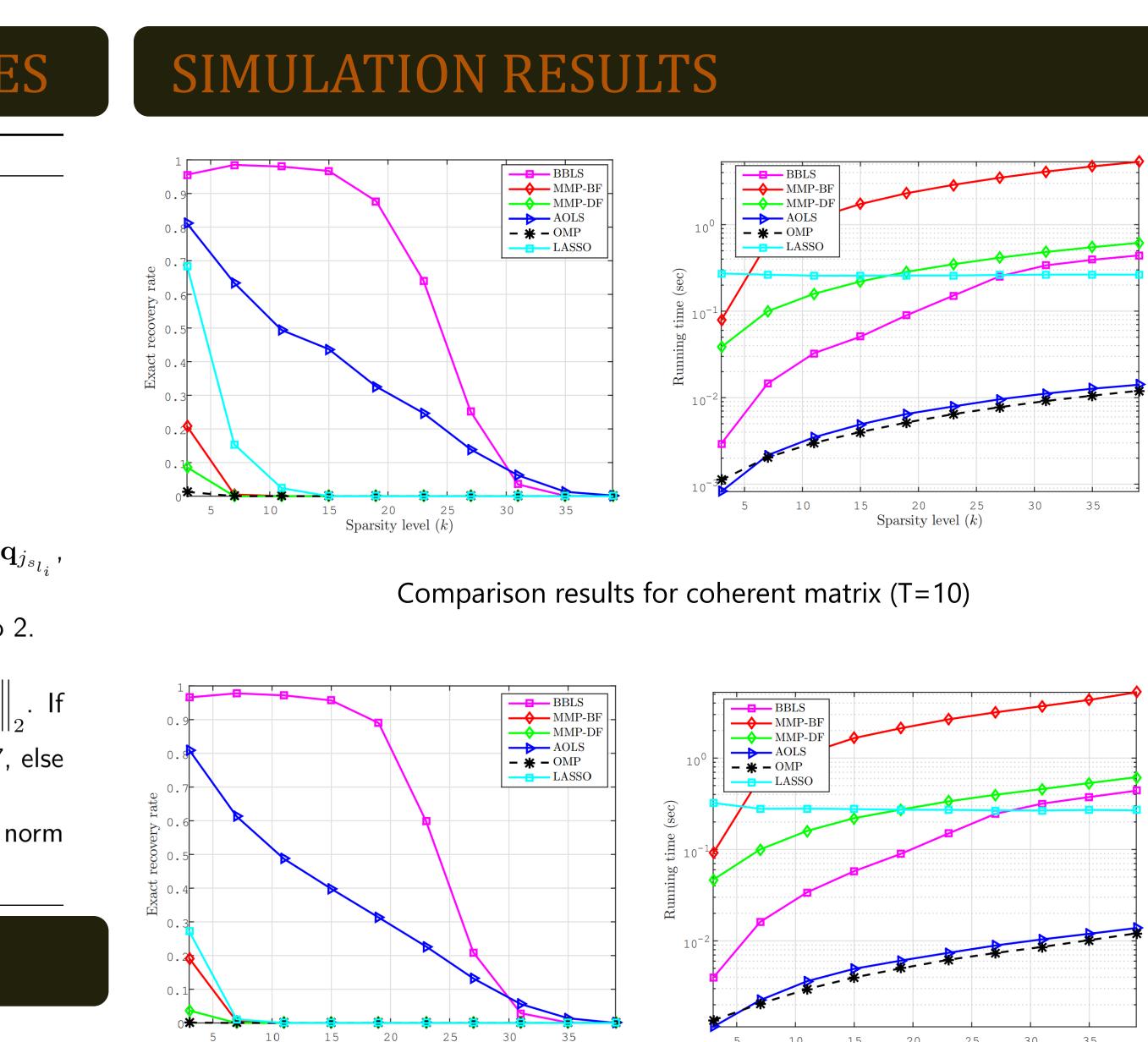
#### SIMULATION RESULTS

- n = 64, m = 128,  $\boldsymbol{x} \sim \mathcal{N}(0, 1)$ , vary k for 1000 independent instances
- $\mathbf{A} = \mathbf{B} + \mathbf{1}\mathbf{t}^{\top}$ , where  $\mathbf{B} \sim \mathcal{N}(0, \frac{1}{n})$  and  $\mathbf{t} \sim \mathcal{U}(0, T)$  for  $T \ge 0$



Comparison results for incoherent matrix (T=0)

Engineering



 $-k - L_{i+1} + 1$ 

#### Comparison results for highly coherent matrix (T=100)

## CONCLUSIONS

The proposed algorithm, BBLS:

Sparsity level (k)

- is a depth-first search scheme for sparse reconstruction.
- selects different number of indices in each level according to a schedule.
- has guarantees for its achievable reconstruction probability.
- is capable of highly accurate recovery even for correlated dictionaries.

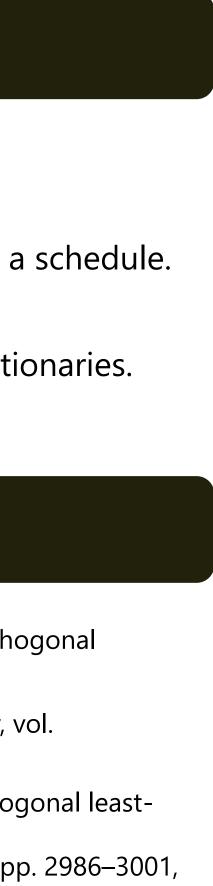
Future work: performance analysis under hybrid dictionaries.

### REFERENCES

[1] J. A. Tropp and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655–4666, 2007

[2] E. J. Candes and T. Tao, "Decoding by linear programming," IEEE Trans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215, 2005

[3] Abolfazl Hashemi and Haris Vikalo, "Sparse linear regression via generalized orthogonal leastsquares," arXiv preprint, arXiv:1602.06916, 2016. [4] S. Kwon, et al. "Multipath matching pursuit," IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2986–3001, 2014.



Sparsity level (k)

