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CONCLUSIONS

The proposed algorithm, BBLS:

• is a depth-first search scheme for sparse reconstruction.

• selects different number of indices in each level according to a schedule.

• has guarantees for its achievable reconstruction probability.

• is capable of highly accurate recovery even for correlated dictionaries.

Future work: performance analysis under hybrid dictionaries.
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• n = 64, m = 128,                    , vary k for 1000 independent instances

• , where                      and                    for 

PERFORMANCE ANALYSIS

• Let                 and                 be universal constants, and 

• Assume                         or                          , and noiseless measurements

• If                                        , then, at least one among         children of     is in                           

s      with probability

• Sparse Linear Regression:

• Construct a tree whose nodes represent columns of coefficient matrix

• A branch-and-bound search to traverse the tree in a depth-first manner

• Use a schedule                            to control the size of the search space

• Employ AOLS expressions to construct the tree

• OLS selection Criterion and update rule:

• Accelerated OLS (AOLS):


