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Introduction



Motivation: Multi-target tracking via Swarm UAVs

e UAVs gathering range and angular measurements of targets’
positions

e Estimation and tracking tasks in control unit

e Constraints due to communication cost, power consumption,

computational burden
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Goal
Communicate a subset of measurements to enable
estimation and tracking of targets under 115



Measurement Model for Radar Systems

ui: location of " UAV at time k s).: location of j™ object at time k
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Measurement Model for Radar Systems

ui: location of " UAV at time k s).: location of j™ object at time k

e Range measurement

1. .
rj = 5 ui — i3 + vy
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Measurement Model for Radar Systems

ui: location of " UAV at time k s).: location of j™ object at time k

e Range measurement

1. .
rj = 5 ui — i3 + vy

e Angular measurements

- u(3) — 5(3)

luj — sill2

Qjj = arctanu’l_‘l)i_sjf(l)
u(2) = 5,.(2)
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Measurement Model for Radar Systems

ui: location of " UAV at time k s).: location of j™ object at time k

e Range measurement

1.
rj = 5 ui — i3 + vy

e Angular measurements

¢jj = arcsin AC) 5}/{(3) + Gjj
[|uy _Sjk||2
up(1) — sh(1)

Qjj = arctan——————
u(2) — 5.(2)

— Nonlinear measurement model

2/15



Challenges of Nonlinearity

e Main challenge: We don't have an MVUE! — Unknown Moment

e Locally-optimal observation selection [Flaherty'06, Krause'08]:
linearize around a guess xq

Vi = yi — gi(x0) ~ Vgi(xo) ' x + v;,

and find an approximate moment:

-1
. 1
Ps = (E;l +Y° (nggi(Xo)ng(Xo)T>

ies !
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Challenges of Nonlinearity

e Main challenge: We don't have an MVUE! — Unknown Moment

e Locally-optimal observation selection [Flaherty'06, Krause'08]:
linearize around a guess xq

~

Vi = yi — gi(x0) & Vgi(x0) 'x + v;,
and find an approximate moment:

-1
X 1
PS = (E;l + Z U’2Vg,-(x0)Vg,-(x0)T>

ies !

e Observation selection task: Minimize a scalarization of P subject
to cardinality constraint
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Proposed Approach




Van Trees Bound (VTB) as Selection Metric

e Objective from linearized model has no known connection to MSE
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Van Trees Bound (VTB) as Selection Metric

e Objective from linearized model has no known connection to MSE

Main ldea

Exploiting on error covariance of
estimators
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Van Trees Bound (VTB) as Selection Metric

e Objective from linearized model has no known connection to MSE

Main ldea

Exploiting Van Trees' bound (VTB) on error covariance of weakly
biased estimators

e Class of quadratic measurement models
e Contribution:
o Deriving new optimality criteria by relying on Van Trees' inequality
o Proving special properties of the proposed criteria
o Developing a greedy selection algorithm with theoretical bounds on
its achievable utility
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The Statement of VTB

Theorem [Van Trees'1968]

Let x be a collection of random unknown parameters, and let
ys = {Vi}ies denote the collection of measurements indexed by the
subset S. For any estimator Xs that satisfies

/ h Vx (px()_() Ey\x[ﬁs - )_(]) dx =0,

— 00

it holds that
1

Ps = By, x [(Vxlog x(X))(Vx log ax(%)) "],

where gy(X) = pys x(X,;y) is the posterior distribution of x given ys.
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VTB for Quadratic Models

e Quadratic relation between observations and unknown parameters

1
yi=-x"Zx+h!x+v;, i€{1,2,...,n}

2
| ——
&i(x)
o A for VTB of quadratic models

Theorem

For any weakly biased estimator Xs with error covariance P it holds
that

-1
Ps = (Z % (2;=,Z] +hh|) + Ix) =Bs

(0Jn
ies !
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Observation Selection for Quadratic Models

e Scalarizations of VTB Bg as objective functions

o logdet(.) scalarization: f°(S) := logdet (Bgl) — logdet (1)
o Tr(.) scalarization: fA(S) = Tr(Ix' — Bs)
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Observation Selection for Quadratic Models

e Scalarizations of VTB Bg as objective functions

o logdet(.) scalarization: f°(S) := logdet (B3") — logdet (I.)

o Tr(.) scalarization: fA(S) := Tr(I;* — Bs)

e Optimization formulation

logdet formulation Trace formulation
maxjgmize fP(S) maxigmize fA(S)
st. SC|n], |S|=K st. SC|n], |S|=K
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Greedy Algorithm

e An NP-hard, combinatorial problem [Natarajan'95] — resort to
approximation methods
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Greedy Algorithm L

e An NP-hard, combinatorial problem [Natarajan'95] — resort to
approximation methods
e Greedy maximization of scalar objective functions
o Initialize S8 =0
o For K iterations:

B Find sensor js € X'\S¢ with the largest marginal gain

B Update current selection: S& « S8 U {js}
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Greedy Algorithm L

e An NP-hard, combinatorial problem [Natarajan'95] — resort to
approximation methods

e Greedy maximization of scalar objective functions

o Initialize S8 = ()
o For K iterations:

B Find sensor js € X'\S¢ with the largest marginal gain

B Update current selection: S& « S8 U {js}

e Polynomial complexity in the number of oracle calls
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Theoretical Results




Set Function

e Set function: A function that assigns a value to each subset of a
ground set X
Example: Value of a cut (S) for all S C V in an undirected graph
G=,¢&).

e Monotonicity: f(S) < f(T) foral SCT C X
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(Weak) Submodularity

e Marginal gain: f;(S) = f(SU {j}) — f(S)
Gain we get by adding j to S
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(Weak) Submodularity

e Marginal gain: f;(S) = f(SU {j}) — f(S)
Gain we get by adding j to S

e Submodularity: £;(S) > £i(T) foral SC T C X and j € X\T

Diminishing returns property

o ar-Weak Submodularity: ar x ;(S) > f;(T) where af > 1 for all
combinations of (S, 7,))
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Characterizing logdet Scalarization

e Greedy maximization performance for normalized, monotone, and
weak submodular functions [Nemhauser'78]:

F(S) > (1—e 7)F(O)
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Characterizing logdet Scalarization

e Greedy maximization performance for normalized, monotone, and
weak submodular functions [Nemhauser'78]:

F(S) > (1—e 7)F(O)

Theorem

e P(0) =0 (normalized)
e fD(S) is monotone ( as we keep selecting

)

e P(8) is submodular (i.e. ao < 1)
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Characterizing Trace Scalarization

Theorem

e fA() = 0 (normalized)

e fA(S) is monotone ( as we keep selecting

)

e Ifhj=0and Z;, = z,-z,-T, then

< )\max(zx)z()\max(aj'zzx) I 1)
(0% maXx 5
= J€ln] /\min(B[n])2(>\min(U'22x) + 1)

e Interpretation as SNR condition
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Simulation Results




Multi-Target Tracking via Swarm UAVs

e Tracking by extended Kalman filter over a priod of 100 time steps
e 20 targets, 20 UAVs, around 600 distance and angular
measurements, selecting K = 100

" A Quadratic, Trace
10 —— Quadratic, log det 10
, Trace
' e Linearized, log det
- - -Random

inearized, log det
- - -Random

Mean square error
Mean square error

5 10 15 20 25 30 35 40 45 50 5 100 15 20 25 30 35 40 45 50
Time horizon (k) Time horizon (k)
(a) Identical noise powers (b) Random noise powers
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Evaluation of Theoretical Results

NRMSE

0 —— Greedy Van Trees

10 - = Optimal MSE
Optimal Van Trees

—-—- Van Trees Bound

3 4 5 6 7 8 9 10
Number of selected observations (K)

(c) Tightness of VTB

e Asymptotic tightness of VTB

11

und on aze
True a0

107 10! 10° 10
Signal-to-noise ratio

(d) Bound on aya

e Tightness of weak submodularity bound in low SNR regime
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Conclusion




Summary and Future Work

Summary:

e Utilizing Van Trees' inequality to derive new optimality criteria for
quadratic observation models

e Showed monotonicity and (weak) submodularity of logdet and trace
scalarizaritions

e Analyzing the performance of a proposed greedy maximization

algorithm
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Summary and Future Work

Summary:

e Utilizing Van Trees' inequality to derive new optimality criteria for
quadratic observation models

e Showed monotonicity and (weak) submodularity of logdet and trace
scalarizaritions

e Analyzing the performance of a proposed greedy maximization

algorithm
Future Work:

e Analyzing the performance of VTB-based criteria in second-order
approximation of general nonlinear observation models
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