

On Submodularity of Quadratic Observation Selection in Constrained Networked Sensing Systems

Mahsa Ghasemi, Abolfazl Hashemi, Ufuk Topcu, and Haris Vikalo

American Control Conference, Friday July 12, 2019

Introduction

- UAVs gathering range and angular measurements of targets' positions
- Estimation and tracking tasks in control unit
- Constraints due to communication cost, power consumption, computational burden

Goal

Communicate a subset of measurements to enable low mean square error (MSE) estimation and tracking of targets under constraints

 \mathbf{u}_{k}^{i} : location of i^{th} UAV at time k \mathbf{s}_{k}^{j} : location of j^{th} object at time k

 \mathbf{u}_{k}^{i} : location of i^{th} UAV at time k \mathbf{s}_{k}^{j} : location of j^{th} object at time k

• Range measurement

$$\mathbf{r}_{ij} = \frac{1}{2} \|\mathbf{u}_k^i - \mathbf{s}_k^j\|_2^2 + \nu_{ij}$$

 \mathbf{u}_k^i : location of i^{th} UAV at time k

• Range measurement

$$\mathbf{r}_{ij} = \frac{1}{2} \|\mathbf{u}_k^i - \mathbf{s}_k^j\|_2^2 + \nu_{ij}$$

 \mathbf{s}_{k}^{j} : location of j^{th} object at time k

• Angular measurements

$$\begin{split} \phi_{ij} &= \arcsin \frac{u_k^i(3) - s_k^j(3)}{\|\mathbf{u}_k^i - \mathbf{s}_k^j\|_2} + \zeta_{ij} \\ \alpha_{ij} &= \arctan \frac{u_k^i(1) - s_k^j(1)}{u_k^i(2) - s_k^j(2)} + \eta_{ij} \end{split}$$

 \mathbf{u}_k^i : location of i^{th} UAV at time k

• Range measurement

$$\mathbf{r}_{ij} = \frac{1}{2} \|\mathbf{u}_k^i - \mathbf{s}_k^j\|_2^2 + \nu_{ij}$$

 \mathbf{s}_{k}^{j} : location of j^{th} object at time k

• Angular measurements

$$\begin{split} \phi_{ij} &= \arcsin \frac{u_k^i(3) - s_k^j(3)}{\|\mathbf{u}_k^i - \mathbf{s}_k^j\|_2} + \zeta_{ij} \\ \alpha_{ij} &= \arctan \frac{u_k^i(1) - s_k^j(1)}{u_k^i(2) - s_k^j(2)} + \eta_{ij} \end{split}$$

 \longrightarrow Nonlinear measurement model

- Main challenge: We don't have an MVUE! \longrightarrow Unknown Moment
- Locally-optimal observation selection [Flaherty'06, Krause'08]: linearize around a guess x₀

$$\hat{y}_i = y_i - g_i(\mathbf{x}_0) \approx \nabla g_i(\mathbf{x}_0)^\top \mathbf{x} + v_i,$$

and find an approximate moment:

$$\hat{\mathsf{P}}_{\mathcal{S}} = \left(\boldsymbol{\Sigma}_{\mathsf{x}}^{-1} + \sum_{i \in \mathcal{S}} \frac{1}{\sigma_i^2} \nabla g_i(\mathsf{x}_0) \nabla g_i(\mathsf{x}_0)^\top \right)^{-1}$$

- Main challenge: We don't have an MVUE! \longrightarrow Unknown Moment
- Locally-optimal observation selection [Flaherty'06, Krause'08]: linearize around a guess x₀

$$\hat{y}_i = y_i - g_i(\mathbf{x}_0) \approx \nabla g_i(\mathbf{x}_0)^\top \mathbf{x} + v_i,$$

and find an approximate moment:

$$\hat{\mathsf{P}}_{\mathcal{S}} = \left(\boldsymbol{\Sigma}_{\mathsf{x}}^{-1} + \sum_{i \in \mathcal{S}} \frac{1}{\sigma_i^2} \nabla g_i(\mathsf{x}_0) \nabla g_i(\mathsf{x}_0)^\top \right)^{-1}$$

- Observation selection task: Minimize a scalarization of $\hat{P}_{\mathcal{S}}$ subject to cardinality constraint

Proposed Approach

• Objective from linearized model has no known connection to MSE

• Objective from linearized model has no known connection to MSE

Main Idea

Exploiting Van Trees' bound (VTB) on error covariance of weakly biased estimators

• Objective from linearized model has no known connection to MSE

Main Idea

Exploiting Van Trees' bound (VTB) on error covariance of weakly biased estimators

- Class of quadratic measurement models
- Contribution:
 - $\circ~$ Deriving new optimality criteria by relying on Van Trees' inequality
 - $\circ~$ Proving special properties of the proposed criteria
 - Developing a greedy selection algorithm with theoretical bounds on its achievable utility

Theorem [Van Trees'1968]

Let **x** be a collection of random unknown parameters, and let $\mathbf{y}_{\mathcal{S}} = \{y_i\}_{i \in \mathcal{S}}$ denote the collection of measurements indexed by the subset \mathcal{S} . For any estimator $\hat{\mathbf{x}}_{\mathcal{S}}$ that satisfies

$$\int_{-\infty}^{+\infty} \nabla_{\bar{\mathbf{x}}} \left(p_{\mathbf{x}}(\bar{\mathbf{x}}) \mathbb{E}_{\mathbf{y}|\mathbf{x}} [\hat{\mathbf{x}}_{\mathcal{S}} - \bar{\mathbf{x}}] \right) d\bar{\mathbf{x}} = \mathbf{0},$$

it holds that

$$\mathbf{P}_{\mathcal{S}} \succeq \mathbb{E}_{\mathbf{y}_{\mathcal{S}}, \mathbf{x}} \left[(\nabla_{\bar{\mathbf{x}}} \log q_{\mathbf{x}}(\bar{\mathbf{x}})) (\nabla_{\bar{\mathbf{x}}} \log q_{\mathbf{x}}(\bar{\mathbf{x}}))^{\top} \right]^{-1},$$

where $q_{\mathbf{x}}(\bar{\mathbf{x}}) = p_{\mathbf{y}_{S},\mathbf{x}}(\bar{\mathbf{x}},;\mathbf{y})$ is the posterior distribution of \mathbf{x} given \mathbf{y}_{S} .

• Quadratic relation between observations and unknown parameters

$$\mathbf{y}_i = \underbrace{\frac{1}{2} \mathbf{x}^\top \mathbf{Z}_i \mathbf{x} + \mathbf{h}_i^\top \mathbf{x}}_{\mathbf{g}_i(\mathbf{x})} + \mathbf{v}_i , \quad i \in \{1, 2, \dots, n\}$$

• A closed-form expression for VTB of quadratic models

Theorem

For any weakly biased estimator $\hat{x}_\mathcal{S}$ with error covariance $P_\mathcal{S}$ it holds that

$$\mathbf{P}_{\mathcal{S}} \succeq \left(\sum_{i \in \mathcal{S}} \frac{1}{\sigma_i^2} \left(\mathbf{Z}_i \boldsymbol{\Sigma}_{\mathsf{x}} \mathbf{Z}_i^\top + \mathbf{h}_i \mathbf{h}_i^\top \right) + \mathbf{I}_{\mathsf{x}} \right)^{-1} = \mathbf{B}_{\mathcal{S}}$$

- Scalarizations of VTB $\boldsymbol{B}_{\mathcal{S}}$ as objective functions
 - $\circ \ \mathsf{logdet}(.) \ \mathsf{scalarization}: \ f^{D}(\mathcal{S}) := \mathsf{logdet}\left(\mathsf{B}_{\mathcal{S}}^{-1}\right) \mathsf{logdet}\left(\mathsf{I}_{\mathsf{x}}\right)$
 - Tr(.) scalarization: $f^{A}(S) := Tr(I_{x}^{-1} B_{S})$

- Scalarizations of VTB $\boldsymbol{B}_{\mathcal{S}}$ as objective functions

$$\circ$$
 logdet(.) scalarization: $f^{D}(\mathcal{S}) := \mathsf{logdet}(\mathsf{B}_{\mathcal{S}}^{-1}) - \mathsf{logdet}(\mathsf{I}_{\mathsf{x}})$

- Tr(.) scalarization: $f^{A}(S) := Tr(I_{x}^{-1} B_{S})$
- Optimization formulation

logdet formulation

 $\begin{array}{ll} \underset{\mathcal{S}}{\text{maximize}} & f^{\mathcal{D}}(\mathcal{S}) \\ \text{s.t.} & \mathcal{S} \subset [n], \ |\mathcal{S}| = K \end{array}$

Trace formulationmaximize $f^{A}(\mathcal{S})$ s.t. $\mathcal{S} \subset [n], \ |\mathcal{S}| = \mathcal{K}$

• An NP-hard, combinatorial problem [Natarajan'95] \rightarrow resort to approximation methods

- An NP-hard, combinatorial problem [Natarajan'95] \rightarrow resort to approximation methods
- Greedy maximization of scalar objective functions
 - $\circ \ \, {\sf Initialize} \ \, {\mathcal S}^g = \emptyset$
 - \circ For K iterations:
 - \blacksquare Find sensor $j_s \in \mathcal{X} \backslash \mathcal{S}^g$ with the largest marginal gain
 - Update current selection: $S^g \leftarrow S^g \cup \{j_s\}$

- An NP-hard, combinatorial problem [Natarajan'95] \rightarrow resort to approximation methods
- Greedy maximization of scalar objective functions
 - $\circ \ \, {\sf Initialize} \ \, {\mathcal S}^g = \emptyset$
 - For K iterations:
 - \blacksquare Find sensor $j_s \in \mathcal{X} \backslash \mathcal{S}^g$ with the largest marginal gain
 - Update current selection: $S^g \leftarrow S^g \cup \{j_s\}$
- Polynomial complexity in the number of oracle calls

Theoretical Results

• Set function: A function that assigns a value to each subset of a ground set ${\mathcal X}$

Example: Value of a cut f(S) for all $S \subseteq V$ in an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.

• Monotonicity: $f(\mathcal{S}) \leq f(\mathcal{T})$ for all $\mathcal{S} \subseteq \mathcal{T} \subseteq \mathcal{X}$

(Weak) Submodularity

Marginal gain: f_j(S) = f(S ∪ {j}) − f(S)
Gain we get by adding j to S

(Weak) Submodularity

Marginal gain: f_j(S) = f(S ∪ {j}) − f(S)
Gain we get by adding j to S

- Submodularity: $f_j(S) \ge f_j(T)$ for all $S \subseteq T \subset X$ and $j \in X \setminus T$ Diminishing returns property
- α_f -Weak Submodularity: $\alpha_f \times f_j(S) \ge f_j(T)$ where $\alpha_f > 1$ for all combinations of (S, T, j)

• Greedy maximization performance for normalized, monotone, and weak submodular functions [Nemhauser'78]:

$$f(\mathcal{S}) \geq (1 - e^{-rac{\mathbf{1}}{lpha_f}})f(\mathcal{O})$$

• Greedy maximization performance for normalized, monotone, and weak submodular functions [Nemhauser'78]:

$$f(\mathcal{S}) \geq (1 - e^{-rac{\mathbf{1}}{lpha_f}})f(\mathcal{O})$$

Theorem

- $f^D(\emptyset) = 0$ (normalized)
- *f^D*(S) is monotone (higher values as we keep selecting more observations)
- $f^D(S)$ is submodular (i.e. $\alpha_{f^D} \leq 1$)

Theorem

- $f^A(\emptyset) = 0$ (normalized)
- *f^A*(S) is monotone (higher values as we keep selecting more observations)
- If $\mathbf{h}_i = \mathbf{0}$ and $\mathbf{Z}_i = \mathbf{z}_i \mathbf{z}_i^{\top}$, then

$$\alpha_{f^{A}} \leq \max_{j \in [n]} \frac{\lambda_{\max}(\boldsymbol{\Sigma}_{x})^{2} (\lambda_{\max}(\sigma_{j}^{2}\boldsymbol{\Sigma}_{x}) + 1)}{\lambda_{\min}(\mathbf{B}_{[n]})^{2} (\lambda_{\min}(\sigma_{j}^{2}\boldsymbol{\Sigma}_{x}) + 1)}.$$

• Interpretation as SNR condition

Simulation Results

- Tracking by extended Kalman filter over a priod of 100 time steps
- 20 targets, 20 UAVs, around 600 distance and angular measurements, selecting K = 100

(c) Tightness of VTB

Signal-to-noise ratio (d) Bound on α_{fA}

 10^{-1}

 10^{0}

 10^{1}

Bound on α_{IS}

- True α₁₀

 10^{-2}

- Asymptotic tightness of VTB
- Tightness of weak submodularity bound in low SNR regime

Conclusion

Summary:

- Utilizing Van Trees' inequality to derive new optimality criteria for quadratic observation models
- Showed monotonicity and (weak) submodularity of log det and trace scalarizaritions
- Analyzing the performance of a proposed greedy maximization algorithm

Summary:

- Utilizing Van Trees' inequality to derive new optimality criteria for quadratic observation models
- Showed monotonicity and (weak) submodularity of log det and trace scalarizaritions
- Analyzing the performance of a proposed greedy maximization algorithm

Future Work:

• Analyzing the performance of VTB-based criteria in second-order approximation of general nonlinear observation models

Thank you!

On Submodularity of Quadratic Observation Selection in Constrained Networked Sensing Systems

Mahsa Ghasemi, Abolfazl Hashemi, Ufuk Topcu, and Haris Vikalo

Correspondance: Mahsa Ghasemi (email: mahsa.ghasemi@utexas.edu) Abolfazl Hashemi (email: abolfazl@utexas.edu)