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Introduction



Motivation: Multi-target tracking via Swarm UAVs

• UAVs gathering range and angular measurements of targets’
positions

• Estimation and tracking tasks in control unit
• Constraints due to communication cost, power consumption,

computational burden

Goal
Communicate a subset of measurements to enable low mean square
error (MSE) estimation and tracking of targets under constraints
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Measurement Model for Radar Systems

ui
k : location of i th UAV at time k sjk : location of j th object at time k

• Range measurement

rij =
1
2
‖ui

k − sjk‖
2
2 + νij

• Angular measurements

φij = arcsin
uik(3)− s jk(3)

‖ui
k − sjk‖2

+ ζij

αij = arctan
uik(1)− s jk(1)

uik(2)− s jk(2)
+ ηij

−→ Nonlinear measurement model
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Challenges of Nonlinearity

• Main challenge: We don’t have an MVUE! −→ Unknown Moment

• Locally-optimal observation selection [Flaherty’06, Krause’08]:
linearize around a guess x0

ŷi = yi − gi (x0) ≈ ∇gi (x0)>x + vi ,

and find an approximate moment:

P̂S =

(
Σ−1

x +
∑
i∈S

1
σ2
i

∇gi (x0)∇gi (x0)>

)−1

• Observation selection task: Minimize a scalarization of P̂S subject
to cardinality constraint
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Proposed Approach



Van Trees Bound (VTB) as Selection Metric

• Objective from linearized model has no known connection to MSE

Main Idea
Exploiting Van Trees’ bound (VTB) on error covariance of weakly
biased estimators

• Class of quadratic measurement models

• Contribution:
◦ Deriving new optimality criteria by relying on Van Trees’ inequality
◦ Proving special properties of the proposed criteria
◦ Developing a greedy selection algorithm with theoretical bounds on

its achievable utility
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The Statement of VTB

Theorem [Van Trees’1968]
Let x be a collection of random unknown parameters, and let
yS = {yi}i∈S denote the collection of measurements indexed by the
subset S. For any estimator x̂S that satisfies∫ +∞

−∞
∇x̄
(
px(x̄)Ey|x[x̂S − x̄]

)
d x̄ = 0,

it holds that

PS � EyS ,x
[
(∇x̄ log qx(x̄))(∇x̄ log qx(x̄))>

]−1
,

where qx(x̄) = pyS ,x(x̄, ; y) is the posterior distribution of x given yS .
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VTB for Quadratic Models

• Quadratic relation between observations and unknown parameters

yi =
1
2
x>Zix + h>i x︸ ︷︷ ︸

gi (x)

+vi , i ∈ {1, 2, . . . , n}

• A closed-form expression for VTB of quadratic models

Theorem
For any weakly biased estimator x̂S with error covariance PS it holds
that

PS �

(∑
i∈S

1
σ2
i

(
ZiΣxZ>i + hih>i

)
+ Ix

)−1

= BS
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Observation Selection for Quadratic Models

• Scalarizations of VTB BS as objective functions

◦ logdet(.) scalarization: f D(S) := logdet
(
B−1
S

)
− logdet (Ix)

◦ Tr(.) scalarization: f A(S) := Tr(I−1
x − BS)

• Optimization formulation

logdet formulation

maximize
S

f D(S)

s.t. S ⊂ [n], |S| = K

Trace formulation

maximize
S

f A(S)

s.t. S ⊂ [n], |S| = K
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Greedy Algorithm

• An NP-hard, combinatorial problem [Natarajan’95] → resort to
approximation methods

• Greedy maximization of scalar objective functions

◦ Initialize Sg = ∅

◦ For K iterations:

� Find sensor js ∈ X\Sg with the largest marginal gain

� Update current selection: Sg ← Sg ∪ {js}

• Polynomial complexity in the number of oracle calls
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Theoretical Results



Set Function

• Set function: A function that assigns a value to each subset of a
ground set X
Example: Value of a cut f (S) for all S ⊆ V in an undirected graph
G = (V, E).

• Monotonicity: f (S) ≤ f (T ) for all S ⊆ T ⊆ X
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(Weak) Submodularity

• Marginal gain: fj(S) = f (S ∪ {j})− f (S)

Gain we get by adding j to S

• Submodularity: fj(S) ≥ fj(T ) for all S ⊆ T ⊂ X and j ∈ X\T
Diminishing returns property

• αf -Weak Submodularity: αf × fj(S) ≥ fj(T ) where αf > 1 for all
combinations of (S, T , j)
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Characterizing logdet Scalarization

• Greedy maximization performance for normalized, monotone, and
weak submodular functions [Nemhauser’78]:

f (S) ≥ (1− e
− 1

αf )f (O)

Theorem

• f D(∅) = 0 (normalized)

• f D(S) is monotone (higher values as we keep selecting more
observations)

• f D(S) is submodular (i.e. αf D ≤ 1)
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Characterizing Trace Scalarization

Theorem

• f A(∅) = 0 (normalized)

• f A(S) is monotone (higher values as we keep selecting more
observations)

• If hi = 0 and Zi = ziz>i , then

αf A ≤ max
j∈[n]

λmax(Σx)2(λmax(σ2
j Σx) + 1)

λmin(B[n])2(λmin(σ2
j Σx) + 1)

.

• Interpretation as SNR condition
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Simulation Results



Multi-Target Tracking via Swarm UAVs

• Tracking by extended Kalman filter over a priod of 100 time steps
• 20 targets, 20 UAVs, around 600 distance and angular

measurements, selecting K = 100
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Evaluation of Theoretical Results
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(d) Bound on αf A

• Asymptotic tightness of VTB

• Tightness of weak submodularity bound in low SNR regime
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Conclusion



Summary and Future Work

Summary:

• Utilizing Van Trees’ inequality to derive new optimality criteria for
quadratic observation models

• Showed monotonicity and (weak) submodularity of log det and trace
scalarizaritions

• Analyzing the performance of a proposed greedy maximization
algorithm

Future Work:

• Analyzing the performance of VTB-based criteria in second-order
approximation of general nonlinear observation models
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Thank you!

On Submodularity of Quadratic Observation Selection

in Constrained Networked Sensing Systems

Mahsa Ghasemi, Abolfazl Hashemi, Ufuk Topcu, and Haris Vikalo

Correspondance: Mahsa Ghasemi (email: mahsa.ghasemi@utexas.edu)
Abolfazl Hashemi (email: abolfazl@utexas.edu)
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