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Model Reduction for Markov Chains

• Markov chains: a modeling framework 
for study of stochastic systems

• Applications in control, machine 
learning, and computational biology

• Large-scale models in practical settings

• Abstraction using structural properties
▪ A nonnegative matrix factorization 

approach

▪ Efficient solution using block coordinate 
gradient descent
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for Markov chains 



Markov Chains (MC)

An MC is a tuple                                   where

• is a finite set of states with cardinality 

• is an initial distribution over the states

• is a probability transition function
such that for all           
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An example MC

A finite path is a finite sequence of states 
, such that

• is in the support of         , and

• for all                            .

The probability of observing     is



Characterization of Low-Dimensional Structure

Nonnegative rank of a Markov chain: Smallest             such that

where                         and                         are mappings from     to      .

right Markov featuresleft Markov features

Goal: Given that a Markov chain with     states has a nonnegative rank of            , 
design an algorithm to find a low-dimensional representation, i.e., the features.
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Formulation as Matrix Factorization

Proposition:1 The nonnegative rank of a Markov chain is      if and only if there 
exists                                                         such that

where      ,     , and     are stochastic matrices.

[1] Zhang, A. and Wang, M. “Spectral state compression of Markov processes,” IEEE Transactions on Information Theory, 2019. 4

Problem Formulation: Given a Markov chain
, find a kernel space and 

kernel transition, denoted by           , along with
sparse mappings such that the following decomposition property holds:



Efficient Multi-Step Transition

Probability of going from state     at time step    to state     , in      time steps, is

, where                          . 
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Assume a perfect low-rank decomposition                    and let                   . Then,

Reducing the computational complexity from                 to               .



Matrix Factorization as an Optimization Task

sparsity constraints

stochastic matrix

regularization 
parameters

promoting 
sparsity
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Block Coordinate Gradient Descent (BCGD)

• Input parameters: regularization parameters              , step sizes 

• Initialize        randomly

• For                                          , iteratively perform:

▪ Given                      , optimize with respect to 

▪ Given                           , optimize with respect to 

▪ Given                                , optimize with respect to 

projection to simplex shrinkage-thresholding operator
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Convergence Analysis and Computational Complexity

Theorem: If the step sizes are selected according to:

then, BCGD converges to a stationary point.

8

Complexity: BCGD algorithm requires                    computations.



Effect of Step Size on Convergence

Setting:
• A transition matrix of size 100 × 100 with rank 25

• 500 iterations of BCGD

• 10 independent runs for each instance

Results:
• Lower approximation error for smaller step 

sizes

• Algorithm diverging for step sizes over 0.2
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Effect of Regularization Parameter on Performance

Results:
• Relation between approximation error and the 

size of the kernel transition

• Trade-off between lower approximation error 
and higher sparsity of the mappings

• Linearity of the running time with respect to 
the kernel size

• Negligible effect of regularization on the 
running time
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Conclusion and Future Directions
Conclusion:
• Proposed a nonnegative matrix factorization formulation for learning sparse 

low-dimensional structures in Markov chains

• Developed an efficient iterative scheme based on block coordinate gradient 
descent
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Future Directions:
• Extending the proposed formulation to model reduction of Markov decision 

processes

• Evaluating the abstract representation in terms of the performance in different 
downstream analyses
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