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Model Reduction for Markov Chains

* Markov chains: a modeling framework
for study of stochastic systems
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* Applications in control, machine T .
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* Large-scale models in practical settings

* Abstraction using structural properties High-Dimensiona

Space P;;
= A nonnegative matrix factorization

approach Model Reduction

. : : . for Markov chains
= Efficient solution using block coordinate

gradient descent



Markov Chains (MC)

An MC is a tuple MC = (S, ptinit, P) Where

* S is afinite set of states with cardinality |S|=n
° Winit is an initial distribution over the states

* P:Sx8—10,1] CR isa probability transition function
such thatforall s€S,) . .o P(s,s) =1 0.25

A finite path is a finite sequence of states
o = xoT1T2 ...TT, SUCh that

* g is in the support of winit, and
* P(wy—1,2¢) >0 forall te{1,2,...,T}.

The probability of observing o is
Pr(0) = ptinit(w0) [Tj—y P(wi-1,21).

0.55

An example MC




Characterization of Low-Dimensional Structure

Nonnegative rank of a Markov chain: Smallest k£ € N such that

Pr(Xes1|Xe) = S0, il Xe)g(Xes),

left Markov features -/ K right Markov features

where fi, f2,..., fx and 91,92,...,9x are mappings from StoR,.

Goal: Given that a Markov chain with n states has a nonnegative rank of £k < n,
design an algorithm to find a low-dimensional representation, i.e., the features.



Formulation as Matrix Factorization

Proposition:! The nonnegative rank of a Markov chain is % if and only if there
exists U e R* P e RY** v e RE*™ such that

P=UPV,
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Problem Formulation: Given a Markov chain
MC = (S, pinit, P), find a kernel space and
kernel transition, denoted by (S, P), along with
sparse mappings (U, V) such that the following decomposition property holds:

Space P;;

P=UPV.

[1] Zhang, A. and Wang, M. “Spectral state compression of Markov processes,” IEEE Transactions on Information Theory, 2019.



Efficient Multi-Step Transition

Probability of going from state s; at time step ¢ to state s;, in m time steps, is

Pr(Xiym = 54| Xt = s;) = pﬁ}”‘), where pg.”) = [P™];; .

Assume a perfect low-rank decomposition P = UPV and let K = VUP. Then,

k k
Pr(Xt+m|Xt) — Z Z UXt,ll[PKm_l]l1l2Vl2,Xt+m'
l1=11>=1

- Reducing the computational complexity from O(mn?) to O(mk?).



Matrix Factorization as an Optimization Task

Ipin D(P, UPV) ’,,*”’ sparsity constraints
vz0.p20v=0_ ___. - i
: k : 4”’(’) ///
I . ,
S.b. ZU’U =1,' |lullo <s; 7, Vi€ [n],/ .
) =L | e
N
> Py=1,1Vle€[k], 7
I : P regularization
:3;1 i ‘// parameters
| PR S
:Z‘/g‘,}. — 1, i ||T)g||0 § ng),‘v’f - [k] \ ! ‘/ \¥
14 ~
s : min SIP=UPV|E + XUl + X[V
Lo ' U>0,P>0,V>0 2 R "
stochastic matrix st. Ul=1, ~. U7
~ promoting
Pl = 1, sparsity
V1=1.



Block Coordinate Gradient Descent (BCGD)

* Input parameters: regularization parameters \,, \,, step sizes oy, B¢, V¢
* Initialize Uy randomly

*For t=0,1,2,...,T — 1, iteratively perform:

« U1 <—— Given (Uy, P, V;), optimize with respect to U
. f)tH «— Given (U;,q, Pt, V;), optimize with respect to P
“ Vi1 <«— Given (Ut+1,15t+1, V;) , optimize with respect to V

e e e e e e e e e e e e e e e e e e = e = = = g

\> i‘ Vi) =—-PL UL (P — U1 Py Vi)
1 1
° Vt+% = Vi —=Vf(W) |
1 1
1 1
Vi =Ta, (T (Uiy) i

projection to simplex -/ \ shrinkage-thresholding operator



Convergence Analysis and Computational Complexity

Theorem: If the step sizes are selected according to:

C1 ||V f(U)||% 8, = Co||V (V)| %

a f— p— —
t E T U V(B V|2

VAU P V|2

_ __ GV
"= WemPaviovor OO0 (0,2)

then, BCGD converges to a stationary point.

Complexity: BCGD algorithm requires (O(nkT') computations.



Effect of Step Size on Convergence

Setting:
* A transition matrix of size 100 x 100 with rank 25

* 500 iterations of BCGD

0.5 1 —— o —0.002
~ \ —I oo =002

* 10 independent runs for each instance

Results: SARARSRRSRSRALS
0 100 200 300 400 500

* Lower approximation error for smaller step itcration
sizes

* Algorithm diverging for step sizes over 0.2



Effect of Regularization Parameter on Performance

Results: ol
* Relation between approximation error and the 'z | * B oo
size of the kernel transition Bonf ot ' =0
go.lo- - /\::1:(105
é 008 - A e A—o0m
* Trade-off between lower approximation error  fow{ %
and higher sparsity of the mappings e I e N ———
20 10 — :(ilzc &0 100
* Linearity of the running time with respect to —
the kernel size Ea i e
N I A= 001 s ;’
40

* Negligible effect of regularization on the
running time

decomposition time (sec

20 10 60 80 100
kernel size



Conclusion and Future Directions

Conclusion:
* Proposed a nonnegative matrix factorization formulation for learning sparse
low-dimensional structures in Markov chains

* Developed an efficient iterative scheme based on block coordinate gradient
descent

Future Directions:
* Extending the proposed formulation to model reduction of Markov decision
processes

* Evaluating the abstract representation in terms of the performance in different
downstream analyses
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