

Identifying Sparse Low-Dimensional Structures in Markov Chains:

A Nonnegative Matrix Factorization Approach

MAHSA GHASEMI, ABOLFAZL HASHEMI, HARIS VIKALO, AND UFUK TOPCU

AMERICAN CONTROL CONFERENCE JULY 1, 2020

Model Reduction for Markov Chains

- Markov chains: a modeling framework for study of stochastic systems
- Applications in control, machine learning, and computational biology
- Large-scale models in practical settings
- Abstraction using structural properties
 - A nonnegative matrix factorization approach
 - Efficient solution using block coordinate gradient descent

Markov Chains (MC)

An MC is a tuple $\mathcal{MC} = (S, \mu_{init}, P)$ where

- S is a finite set of states with cardinality |S| = n
- μ_{init} is an initial distribution over the states
- $P: S \times S \rightarrow [0,1] \subseteq \mathbb{R}$ is a probability transition function such that for all $s \in S, \sum_{s' \in S} P(s,s') = 1$

A finite path is a finite sequence of states $\sigma = x_0 x_1 x_2 \dots x_T$, such that

- x_0 is in the support of μ_{init} , and
- $P(x_{t-1}, x_t) > 0$ for all $t \in \{1, 2, \dots, T\}$.

The probability of observing σ is

 $Pr(\sigma) = \mu_{init}(x_0) \prod_{t=1}^{T} P(x_{t-1}, x_t).$

Characterization of Low-Dimensional Structure

Nonnegative rank of a Markov chain: Smallest $k \in \mathbb{N}$ such that

$$\Pr(X_{t+1}|X_t) = \sum_{l=1}^k f_l(X_t)g_l(X_{t+1}),$$

left Markov features
right Markov features

where f_1, f_2, \ldots, f_k and g_1, g_2, \ldots, g_k are mappings from S to \mathbb{R}_+ .

Goal: Given that a Markov chain with n states has a nonnegative rank of $k \ll n$, design an algorithm to find a low-dimensional representation, i.e., the features.

Formulation as Matrix Factorization

Proposition:¹ The nonnegative rank of a Markov chain is k if and only if there exists $U \in \mathbb{R}^{n \times k}_+$, $\tilde{P} \in \mathbb{R}^{k \times k}_+$, $V \in \mathbb{R}^{k \times n}_+$ such that

 $P = U\tilde{P}V,$

where U, \tilde{P} , and V are stochastic matrices.

Problem Formulation: Given a Markov chain $\mathcal{MC} = (S, \mu_{init}, P)$, find a kernel space and kernel transition, denoted by (\tilde{S}, \tilde{P}) , along with sparse mappings (U, V) such that the following decomposition property holds:

Low-Dimensional Space

Efficient Multi-Step Transition

Probability of going from state s_i at time step t to state s_j , in m time steps, is

$$\Pr(X_{t+m} = s_j | X_t = s_i) = p_{ij}^{(m)}$$
, where $p_{ij}^{(m)} = [P^m]_{ij}$.

Assume a perfect low-rank decomposition $P = U\tilde{P}V$ and let $K = VU\tilde{P}$. Then,

$$\Pr(X_{t+m}|X_t) = \sum_{l_1=1}^k \sum_{l_2=1}^k U_{X_t,l_1}[\tilde{P}K^{m-1}]_{l_1l_2}V_{l_2,X_{t+m}}.$$

Reducing the computational complexity from $O(mn^2)$ to $O(mk^2)$.

Matrix Factorization as an Optimization Task

Block Coordinate Gradient Descent (BCGD)

- Input parameters: regularization parameters λ_u, λ_v , step sizes $lpha_t, eta_t, \gamma_t$
- Initialize U_0 randomly
- For $t = 0, 1, 2, \dots, T-1$, iteratively perform:

•
$$\nabla f(V_t) = -\tilde{P}_{t+1}^{\top} U_{t+1}^{\top} (P - U_{t+1} \tilde{P}_{t+1} V_t)$$

• $V_{t+\frac{1}{2}} = V_t - \gamma_t \nabla f(V_t)$
• $V_{t+1} = \prod_{\Delta_n} \left(\mathcal{T}_{\frac{\lambda_v}{2}}(V_{t+\frac{1}{2}}) \right)$
projection to simplex shrinkage-thresholding operator

Convergence Analysis and Computational Complexity

Theorem: If the step sizes are selected according to:

$$\alpha_{t} = \frac{C_{1} \|\nabla f(U_{t})\|_{F}^{2}}{\|\nabla f(U_{t})\tilde{P}_{t}V_{t}\|_{F}^{2}}, \qquad \beta_{t} = \frac{C_{2} \|\nabla f(V_{t})\|_{F}^{2}}{\|U_{t+1}\nabla f(\tilde{P}_{t})V_{t}\|_{F}^{2}},$$
$$\gamma_{t} = \frac{C_{3} \|\nabla f(\tilde{P}_{t})\|_{F}^{2}}{\|U_{t+1}\tilde{P}_{t+1}\nabla f(V_{t})\|_{F}^{2}}, \qquad C_{1}, C_{2}, C_{3} \in (0, 2),$$

then, BCGD converges to a stationary point.

Complexity: BCGD algorithm requires O(nkT) computations.

Effect of Step Size on Convergence

Setting:

- A transition matrix of size 100 × 100 with rank 25
- 500 iterations of BCGD
- 10 independent runs for each instance

Results:

- Lower approximation error for smaller step sizes
- Algorithm diverging for step sizes over 0.2

Effect of Regularization Parameter on Performance

Results:

- Relation between approximation error and the size of the kernel transition
- Trade-off between lower approximation error and higher sparsity of the mappings
- Linearity of the running time with respect to the kernel size
- Negligible effect of regularization on the running time

Conclusion and Future Directions

Conclusion:

- Proposed a nonnegative matrix factorization formulation for learning sparse low-dimensional structures in Markov chains
- Developed an efficient iterative scheme based on block coordinate gradient descent

Future Directions:

- Extending the proposed formulation to model reduction of Markov decision processes
- Evaluating the abstract representation in terms of the performance in different downstream analyses

Identifying Sparse Low-Dimensional Structures in Markov Chains: A Nonnegative Matrix Factorization Approach

Mahsa Ghasemi, Abolfazl Hashemi, Haris Vikalo, and Ufuk Topcu