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TL;DR
• Geometric Median (GM) is a well studied rotation and translation invariant robust 

estimator with optimal breakdown point of 1/2 even under gross corruption.

• However high computational cost makes it infeasible for robust optimization in 
high dimensional settings. 

• We show that by applying GM to only a judiciously chosen block of coordinates 
at a time and using a memory mechanism, one can retain the breakdown point 
of ½ while attaining the same non-asymptotic convergence rate as SGD with 
GM. We call the resulting algorithm BGMD. 

• Empirically, BGMD can be up to 3x more efficient to train than GM-SGD while 
still ensuring similar test accuracy and maintaining same level of robustness. 

• In clean setting, BGMD reaches similar accuracy as SGD while constrained to 
compute budget (see Fig. 2, 3, 4) indicating BGMD is a practical robust 
optimization approach in large scale settings.



Robust SGD

• Smooth non-convex problems with finite sum structure: 

• SGD proceeds as follows: 

• Gross Corruption  Given b samples an adversary can replace 0 ≤ 𝜓 ≤ 1/2
fraction of them with arbitrary points. Suppose G and B are sets of good and 
bad points 𝛼 = |"|

|#|
= $

$%&
≤ 1 (𝛼 corruption) and we want to solve:  



Gradient Aggregation

• Given : b gradient estimates

• When 𝜓 = 0 : empirical mean is common measure of center.  

• MSE minimization:



Robust Gradient Aggregation

• Breakdown Point : smallest fraction of contamination that must be 
introduced to cause an estimator to break i.e. produce arbitrarily wrong 
estimates. Finite Sample breakdown point 

• No linear gradient aggregation (e.g. mean in SGD) strategy can tolerate 
even a single such corrupted point. Consider the following sample:  

• Mean has finite sample breakdown point of 1/b i.e. asymptotic breakdown 0

• Make SGD Robust:  Replace Mean with Robust Mean Estimator. 



Univariate Robust Gradient 
Aggregation

• (Univariate Setting) median is a measure which is robust to outliers. In 
fact, median achieves the optimal breakdown point of ½

• Given samples                                       median is the (b+1)/2 th ordered 
statistic if b is odd else is the mean of (b+1)/2 th and b/2 th ordered statistic.

• Median is also minimizer of sum of absolute errors:



Multivariate Robust Gradient 
Aggregation

• Coordinate wise Median (CM)

– When d > 2 CM need not lie in the convex hull of the samples and are not orthogonal 
equivariant i.e. do not commute with co-ordinate transform

• Geometric Median (GM)



Multivariate Robust Gradient 
Aggregation

This Toy example in 2 dimensions demonstrates 
the superior robustness properties of GM for estimating the 
aggregated gradient in presence of heavy corruption.



Robust SGD in High Dimension



GM in High Dimension

1. Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic gradient descent. In Advances in Neural Information 
Processing Systems, pages 4613–4623,2018

2. Michael B Cohen, Yin Tat Lee, Gary Miller, Jakub Pachocki, and Aaron Sidford. Geometric median in nearly linear time. 
In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages 9–21, 2016.

• GM-SGD1 : 𝑥'(& = x) − 𝜂 .𝑔' .𝑔' = GM({x*})

• Unfortunately, finding GM is computationally hard. 

• Best known algorithm2 to find 𝜖 approximate GM of n points in Rd requires 
O(𝑑/𝜖+).  

• GM is computationally intractable for optimization in high dimensions arising 
from deep learning models e.g. 𝑑 ≈ 60M Alexnet, 𝑑 ≈ 175B GPT3 



GM over low dimensional subspace 

• Gradient distribution is often long tailed especially in case of over-
parameterized deep learning settings. 

• Intuition:  Performing gradient aggregation in a low dimensional subspace 
might have little impact in the downstream optimization task. 

• BGMD (proposed) judiciously subsets a block of k dimensions (k << d) and 
performs GM in Rk (Algorithm 1). Note this strategy is biased. BGMD 
introduces a memory mechanism to fix this bias and maintain same non-
asymptotic convergence rate as SGD with GM in Rd. 



Block coordinate GM Descent



Block Selection Strategy

• what would be the best strategy to select the most informative block of 
coordinates? 
– Ideally, pick k dimensions that would result in the largest decrease in 

training loss. This is NP Hard L

– Consider where each row is the transpose of one stochastic 
gradient estimate 

– Selecting k dimensions is equivalent to k column subset selection of 
the jacobian. We use active norm sampling* to pick k columns 𝐼, of the 
jacobian (Algorithm 2) 



Block Selection Strategy

It is worth noting that without additional distributional 
assumption on the gradients the lower bound on 𝜉
cannot be improved. 

Note the worst case when all the gradients are uniformly 
distributed along each coordinate

In the figure we plot relative residual error 
for training LeNet on Fashion MNIST 



Memory 

• Aggressively small k (which we want) implies large information loss , 
because restricting to k dimensions results in -

,
factor increase in variance. 

• Solution:  Keep track of Residual 𝑀' = ||𝐺' − 𝐶, 𝐺' || ∈ 𝑅. × - (b is batch 
size, d is dimension) , initialized to 0.

• At each update step, accumulate residual error incurred by ignoring (d - k ) 
dimensions, averaged overall the samples participating in that round 
referred as memory. In the  next iterations add back memory to new 
gradient estimates.

• Fixes the bias due to sampling and retains convergence



Benefit of Memory

• Allows to more aggressively reduce 
block size while preserving 
convergence. 

• Additional overhead to update Memory 
is negligible compared to savings by 
aggressive block size reduction

• 𝑘 = 𝛽𝑑 ; 0 < 𝛽 ≤ 1 We train LeNet on 
Fashion MNIST for different 𝛽. We see 
that training with the memory 
mechanism (m) enjoys the same 
accuracy while using a much smaller 𝛽



Computational Complexity

• Consider solving optimization problem with finite sum structure with 
parameters ∈ 𝑅- and batch size 𝑏 using SGD like iterations. 

Computational Upper Bound 



Theory: Assumptions



Convergence Guarantees

• Non-convex and Smooth :  Suppose 𝑓0 corresponding to non-corrupt samples
i.e. 𝑖 ∈ 𝐺 are 𝐿 smooth and non-convex. Run BGMD with 𝜖 approximate GM 
oracle with 𝛾 = &

+1
in presence of 𝛼 corruption for 𝑇 iterations. Sample any 

iteration 𝜏 uniformly at random then:  

• Non Convex PLC : Suppose 𝑓0 further satisfies PLC with parameter 𝜇 then 
running BGMD with 𝛾 = &

21
satisfies: 



Empirical Evidence: Feature Corruption

• Feature Corruption
• Additive Corruption (Huber’s Contamination):

𝑧' ∼ 𝒩 100, 1 directly added to the image.
• Impulse Corruption: 

Salt and Pepper noise added by setting 90% of pixels to 0 or 1. 



Empirical Evidence: Gradient 
Corruption

• Gradient Corruption
• Additive Corruption (Huber’s Contamination):

g)3 = 𝑔' + 𝑧' 𝑤ℎ𝑒𝑟𝑒 𝑧'∼ 𝒩 0, 100
• Bit Flip Corruption:  scaled bit flipped version of the actual gradient

g)3 = −100 𝑔'



Empirical Evidence: Label Corruption

• Label Corruption
• Backdoor Attack: flip the labels of randomly chosen 𝜓 fraction of 

samples to a target label. 



Empirical Evidence: Generalization



Empirical Evidence: Generalization



Extension: QBGMD

• In distributed setting, gradient updates are often compressed to reduce 
communication cost.

• Now, this lemma immediately gives a communication efficient version of our 
algorithm referred as Quantized BGMD (QBGMD) where the clients 
communicate only quantized gradients.

• The convergence rates are identical i.e. Theorem 1,2 hold with:                  
0 < 𝜉 ≤ 1 − 𝛽,,5

,
-
)



Extension: FedBGMD



Convergence Guarantee FedBGMD


