Block Coordinate Geometric Median Descent”

* Robust SGD in High Dimensions via Block Coordinate Geometric Median Descent.
Anish Acharya, Abolfazl Hashemi, Sujay Sanghavi, Inderjit Dhillon, Prateek Jain, Ufuk Topcu

TL;DR

Geometric Median (GM) is a well studied rotation and translation invariant robust
estimator with optimal breakdown point of 1/2 even under gross corruption.

However high computational cost makes it infeasible for robust optimization in
high dimensional settings.

We show that by applying GM to only a judiciously chosen block of coordinates
at a time and using a memory mechanism, one can retain the breakdown point

of ¥2 while attaining the same non-asymptotic convergence rate as SGD with
GM. We call the resulting algorithm BGMD.

Empirically, BGMD can be up to 3x more efficient to train than GM-SGD while
still ensuring similar test accuracy and maintaining same level of robustness.

In clean setting, BGMD reaches similar accuracy as SGD while constrained to
compute budget (see Fig. 2, 3, 4) indicating BGMD is a practical robust
optimization approach in large scale settings.

Robust SGD

Smooth non-convex problems with finite sum structure:

min [f(x) = ,—112 fi(x)]

xcRd 1
N N 1 t
SGD proceeds as follows: i1 :=x: —7g", g = Dy > &
" 1E€Dy

Gross Corruption Given b samples an adversary can replace 0 <y < 1/2

fraction of them with arbitrary points. Suppose G and B are sets of good and

bad points a = % = ﬁ < 1 (a corruption) and we want to solve:

1
min | f(x) := @ Zfz‘(x)
1€G

x€Rd

Gradient Aggregation

« Given : b gradient estimates
D, = {g; € R : Vi € [b]}
« When ¢ =0 : empirical mean is common measure of center.

| 1)
MEAN({gi € R? : Vi € [b]}) := p = 7 Z g,

i€ [b]

b
« MSE minimization: p=argmin) _|lg; —]|’
yeR i—1

Robust Gradient Aggregation

Breakdown Point : smallest fraction of contamination that must be
introduced to cause an estimator to break i.e. produce arbitrarily wrong
estimates. Finite Sample breakdown point 1/b < ¢* < 1/2

No linear gradient aggregation (e.g. mean in SGD) strategy can tolerate
even a single such corrupted point. Consider the following sample:

g = — Ziep,\j g9t

Mean has finite sample breakdown point of 1/b i.e. asymptotic breakdown O

Make SGD Robust: Replace Mean with Robust Mean Estimator.

Univariate Robust Gradient
Aggregation

(Univariate Setting) median is a measure which is robust to outliers. In
fact, median achieves the optimal breakdown point of 2

Given samples D, = {g; € R : Vi € [b]} median is the (b+1)/2 th ordered
statistic if b is odd else is the mean of (b+1)/2 th and b/2 th ordered statistic.

Median is also minimizer of sum of absolute errors:

b

MED(_(/',i : Vi € [b]) = a.rgmiuz |_(/; —
yeR i1

Multivariate Robust Gradient
Aggregation

« Coordinate wise Median (CM)

M({g! € RY: Vi € [b]})[k] = MED(g![k] : Vi € [b]) Vk € [d]

— When d > 2 CM need not lie in the convex hull of the samples and are not orthogonal
equivariant i.e. do not commute with co-ordinate transform

« Geometric Median (GM)
x, = GM({x;}) = arg min [g Z |y — x,H]

yeX

Multivariate Robust Gradient
Aggregation

Clean Data 30% Corruption 45% Corruption

PR Y Mean 2 | A e Y Mean
* Co-Med % Co-Med
0 Y Geo-Med Y Geo-Med
Y Timmed M 0 Y Timmed Mean
Y Norm Clip Y Norm Clip
2 Krum 2 Krum
~ Tue Mean ~ ‘ Tue M
4 i& 4
e _®
| e, || ey
8 ﬁ,..h‘ 8 *h‘o

This Toy example in 2 dimensions demonstrates
the superior robustness properties of GM for estimating the

aggregated gradient in presence of heavy corruption.

Robust SGD in High Dimension

Algorithm Aggregation Operator™ Iteration Complexity™* Breakdown Point™*
SGD MEAN(+) O(bd) 1/b
(Yang et al., 2019; Yin et al., 2018) CMm(-) O(bdlogb) 172
(Wu et al., 2020) GM(-) O(de2 + bd) 1/2
BGMD (This work) BGM(+) O(ke™2 + bd) 1/2
(Data and Diggavi, 2020) (Steinhardt et al., 2017) O(db? min(d, b) + bd) 1/4
(Blanchard et al., 2017) KRUM(-) O(b*d) | 8]
(Yin et al., 2018) CTMg(+) O(bd(1 — 2/3) + bdlogb) | 8]
(Ghosh et al., 2019; Gupta et al., 2020) Ncg(+) O(bd(2 —) + blogb) 1/b

Table 1: Comparison of time complexity and robustness properties of different robust optimization methods (also see Fig. 6) without any
distributional assumptions on the data. The bold quantities show a method achieves the theoretical limits. The first four methods are
related to robust aggregation based approaches while the last four are filtering based approaches. * CM(-) co-ordinate wise median, GM(-)
Geometric (spatial) median, BGM(-) Block Geometric Median, CTMg(+) Co-ordinate wise Trimmed mean, NCz(-) Norm Clipping. s#x
In section A.2 we discuss the breakdown points and iteration complexities of these methods in more detail.

GM in High Dimension

* GM-SGD':xp11 =x¢—nger gr = GM({x;})
« Unfortunately, finding GM is computationally hard.

« Best known algorithm? to find € approximate GM of n points in R4requires
O(d/€?).

« GM is computationally intractable for optimization in high dimensions arising
from deep learning models e.g. d = 60M Alexnet, d = 175B GPT3

1. Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic gradient descent. In Advances in Neural Information
Processing Systems, pages 4613—4623,2018

2. Michael B Cohen, Yin Tat Lee, Gary Miller, Jakub Pachocki, and Aaron Sidford. Geometric median in nearly linear time.
In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages 9-21, 2016.

GM over low dimensional subspace

Gradient distribution is often long tailed especially in case of over-
parameterized deep learning settings.

Intuition: Performing gradient aggregation in a low dimensional subspace
might have little impact in the downstream optimization task.

BGMD (proposed) judiciously subsets a block of k dimensions (k << d) and
performs GM in Rk (Algorithm 1). Note this strategy is biased. BGMD
introduces a memory mechanism to fix this bias and maintain same non-
asymptotic convergence rate as SGD with GM in R,

Block coordinate GM Descent

Algorithm 1 Block GM Descent (BGMD) Algorithm 2 Block Coordinate Selection Strategy
Initialize: estimate: xo € R?, step-size: v, memory: mg = Input: G, € R™%¢ L
0, Block Coordinate Selection operator: Cy(+), Geometric for coordinates j=0, ..., d-1do
Median operator: GM(-) | s; « ||Gy[:, 4]]1* (norm along each dimension)
for epochs t =0, ..., until convergence do end
select samples D; = {i1,..., 0} Sample set [, of &£ dimensions with probabilities propor-
obtain: g,(i) = Vfi(x¢), Vi € D; (back-propagation) tional to s
Let G, € R**4 st each row G,i,:] = g’(i) Ce(Ge)[i,j € Ix] = Guli, 4], Ck(Ge)[i,j ¢ k] =0

Gyli,:] < vGyli,:] + my Vi € [b] (add memory) Return: Ci(G:)

A, = Ci(Gy) € R¥*F (subset k dim via Algo. 2)

M;.1 =G, - A, (compute residuals)

A S 1: Fa g
My 1 = 4 D o<icy Mes1[i,:] (update memory)

g := GM(A,) (robust aggregation in R*)
Xi+1 := Xy — g (parameter update)

end

Block Selection Strategy

« what would be the best strategy to select the most informative block of
coordinates?
— ldeally, pick k dimensions that would result in the largest decrease in
training loss. This is NP Hard ®

— Consider G, € R™¢ where each row is the transpose of one stochastic
gradient estimate G, [i,:] = (g\")" € R4, Vi ¢ [b]

— Selecting k dimensions is equivalent to k column subset selection of
the jacobian. We use active nhorm sampling* to pick k columns I, of the

jacobian (Algorithm 2)

Ci(Go)li, j € Ik] = Gli, §], Ck(Ge)[i,j ¢ Ik] = 0

Block Selection Strategy

Lemma 1. Algorithm 2 yields a contraction approximation —
E [ICk(Ge) — Gell?|Ge] < 1= EIIGe? § <€ L T
It is worth noting that without additional distributional
assumption on the gradients the lower bound on ¢
cannot be improved. s v B

Gradient Aggregation Steps

Note the worst case when all the gradients are uniformly
distributed along each coordinate

In the figure we plot relative residual error
|Gy = Ck(Go)[?/IIG4||* for training LeNet on Fashion MNIST

Memory

Aggressively small k (which we want) implies large information loss
because restricting to k dimensions results in . factor increase in variance.

Solution: Keep track of Residual M; = ||G, — Cx(G,)|| € R? *¢ (b is batch
size, d is dimension) , initialized to O.

At each update step, accumulate residual error incurred by ignoring (d - k)
dimensions, averaged overall the samples participating in that round
referred as memory. In the next iterations add back memory to new

gradient estimates.
G/[‘i. :] = ",G([I] -+ lil; Vi € [() 1)]

M, = Gy — Ci(G) 11ingqy = 5 Z M, [i,]

()// ~b

Fixes the bias due to sampling and retains convergence

Benefit of Memory

Allows to more aggressively reduce
block size while preserving
convergence.

Additional overhead to update Memory

is negligible compared to savings by
aggressive block size reduction

k=pd;0< f <1Wetrain LeNet on
Fashion MNIST for different 5. We see
that training with the memory
mechanism (m) enjoys the same
accuracy while using a much smaller

Test Accuracy (%)
2] [e2] 2] Vo]
S ()] 2] o

(o]
N

—= =005+ m
—— 7 =05
-— 3=10.1
- 3 =103
-— 3 =105

4 5 6 7
Number of passes over data

8 9 10

Computational Complexity

« Consider solving optimization problem with finite sum structure with
parameters € R% and batch size b using SGD like iterations.

Proposition 1. (Computational Complexity). Given an ¢- approximate GM oracle , each gradient aggregation of BGMD
with block size k incurs a computational cost of: O(% + bd).

€

Lemma 2. Let k < O(% — be?) - d. Then, given an - approximate GM oracle, Algorithm I achieves a factor F' speedup
over GM-SGD for aggregating b samples.

O(Time)

T T T T
1000 G000 K000 10000
((dimension)

Computational Upper Bound

Theory: Assumptions

Let f := 1/G) .. fi(x) denote the average of non-
corrupt functions. Then, we also assume that the uncon- . _
strained problem arg min, g+ f(x) has a non empty solu- Assumption 2 (Smoothness). Each non-corrupt function

tion set X'*. We will denote the optimal function value as [fi i L-smooth i.e. ¥i € G and ¥,y € R?:

f(x™) where x* € A" and initial parameters by x,. For f 9

notational convenience define Ry = f(xg) — f(x*). fi(x) < fily) + (x =y, Vfi(y)) + §||x -yl® a0
Note that if f; are twice differentiable then this implies that
the eigenvalues of V* f;(x) are bounded above by L.

Assumption 1 (Stochastic Oracle). Each non-corrupt
sample i € G is endowed with an unbiased stochastic first- Assumption 3 (Polyak-Lojasiewicz Condition). [satis-

order oracle with bounded variance, i.e. fies the Polyak-Lojasiewicz condition (PLC) with parameter
i > 0 (Polyak, 1963; Karimi et al., 2016):
i e Ly - IVFGIP 2 2u(f(x) = ("), >0 (1)
E.-p,||VFi(x,2)||? < o? (9)

Note that, PLC implies that every stationary point is a global
minima but doesn’t imply uniqueness and is a much milder
condition than strong convexity (Karimi et al., 2016).

We now analyze the convergence properties of BGMD (Al-
gorithm 1) and state the results in Theorem 1 and Theorem
2 for general non-convex functions and functions satisfying
PLC, respectively. ’

Convergence Guarantees

Non-convex and Smooth : Suppose f; corresponding to non-corrupt samples
l.e. i € G are L smooth and non-convex. Run BGMD with € approximate GM

oracle with y = 2—1L in presence of a corruption for T iterations. Sample any
iteration 7 uniformly at random then:

. 2 LRy s T L%
E||V f(x-)]" = O(74 " (1 - a)? N GI*(1 — @)?

Non Convex PLC : Suppose f; further satisfies PLC with parameter u then
running BGMD with y = 4—1L satisfies:

LRy [! }T o2e2 i Le
[8L p2(l —a)? w?|Gl2(1 — a)?

E||%r — x*||? = 0(

Remark 1 (BGMD Breakdown Point). BGMD converges
to the neighborhood of a stationary point V0 < 1) < 1/2 i.e.
has optimal breakdown point of 1/2.

Empirical Evidence: Feature Corruption

» Feature Corruption
« Additive Corruption (Huber’s Contamination):
z; ~ N'(100,1) directly added to the image.
* Impulse Corruption:
Salt and Pepper noise added by setting 90% of pixels to 0 or 1.

-

.-

-
-

(a) No corruption (b) 10% Corruption (¢) 20% Corruption (d) 40% Corruption

Figure 2: Robustness to Feature Corruption: Test accuracy of different schemes as a function of wall clock time for training Fashion-
MNIST using LeNet (i.i.d) in presence of impulse noise. Observe that BGMD is able to maintain high accuracy even in presence of
strong corruption while attaining at least 3x speedup over GMD whereas CMD performs sub-optimally and SGD diverges at such levels
of corruption. Further, note that in clean setting, BGMD can almost reach the same accuracy of SGD while using the same compute
budget. * Note that all the algorithms were run for same number of epochs.

Empirical Evidence: Gradient
Corruption

» Gradient Corruption
« Additive Corruption (Huber’s Contamination):
g = g¢ +z; where z;~ N(0,100)
« Bit Flip Corruption: scaled bit flipped version of the actual gradient
gt = —100 g,

it

00 900 1200 1300 1800 2100 2430 2780 3000

(a) No corruption (b) 10% Corruption (c) 20% Corruption (d) 40% Corruption

Figure 3: Robustness to Gradient Corruption: Training Fashion-MNIST using LeNet in i.i.d setting in presence of scaled bit flip
corruption to stochastic gradients. Similar to Figure 2, BGMD remains highly robust. Further, as seen from the plots against wall clock
time BGMD results in more than 2.5x speedup over all settings. Further in clean setting, BGMD can almost reach the same accuracy of
SGD while using the same compute budget.

Empirical Evidence: Label Corruption

« Label Corruption
« Backdoor Attack: flip the labels of randomly chosen vy fraction of

samples to a target label.

t4 |
?\i\ |
! |

L

i
d
.5
(v v ' .
) MO 0 WO 1200 1500 1800 2100 2400 2700 00X
Tme

(c) 20% Corruption (d) 40% Corruption

(a) No corruption

Figure 4: Robustness to Label Corruption: Training Fashion-MNIST (iid) with LeNet in presence of backdoor attack. We note
similar superior performance of BGMD while resulting in more than 2.5x speedup over GMD.

Empirical Evidence: Generalization

Corruption (%) SGD CMmD BGMD GMD
LeNet - Fashion MNIST (homogeneous)
Clean - 89.39+0.28 83.82+0.26 89.25+0.19 88.9840.3
Gradient Corruption
Bit Flip 20 - 84.20+0.02 88.42+0.16 88.07+0.05
40 - 82.33+1.60 85.67+0.09 85.57+0.09
Additive 20 - 72.55+0.16 87.87+0.33 87.24+0.16
40 - 41.04+1.13 88.29-+0.01 83.89+0.08
Feature Corruption
.. 20 - 82.38+0.13 86.76+0.03 86.63-+0.01
Additive 40 : 78.54+0.65 82.27+0.06 81.23+0.03
Impulse 20 79.184+6.47 82.59+0.60 86.91+0.36 86.23+0.03
g 40 - 78.03+0.73 82.11+0.73 81.41+0.12
Label Corruption
Backdoor 20 86.99+0.02 76.38+0.13 88.97+0.10 88.26+0.04
- 40 73.01+0.68 60.85+1.24 84.69+0.31 81.32+0.16
ResNet18 - CIFAR10 (heterogeneous)
Clean B 82.29+1.32 85.50+1.43 84.82+0.76 85.65+0.1%
Gradient Corruption
Bit Flip 20 - 80.87+0.21 87.56-+0.06 88.0710.05
40 - 77.41+1.01 82.66+0.3] 80.81+0.01
Kdaiive 20 20.7+1.56 54.75+0.38 83.84+0.12 82.40+0.90
40 - 23.35+6.13 82.79+0.68 79.46+0.24

Table 2: Summary of generalization performance under variety of corruption settings. Missing values (-) denotes that the training has
diverged. It is clear, that in addition to being efficient BGMD also enjoys superior generalization performance. While, this is an interesting
future work, it is possible that the resulting jacobian compression operator Cx (+) via Algorithm 2 results in implicit regularization benefits
in high dimensional settings (Anonymous, 2022; Gower et al., 2020; Wu et al., 2019) explaining the superior performance.

Empirical Evidence: Generalization

Table 3: 1.12M parameter CNN trained on MNIST in regular 1.i.d. setting. For all corruption types, test accuracy of BGMD
1s similar to that of GMD and surprisingly, in some cases even higher. As expected, SGD fails to make progress under
corruption . CMD performs sub-optimally as corruption is increased.

Corruption (%) SGD CMmD BGMD GMmD
Clean - 99.27+0.01 98.83+0.02 99.09+£0.05 99.24+0.02

Gradient Attack

Bit Fli 20 9.51+1.77 98.79-0.01 99.06-0.02 98.98-+0.01
P 40 9.60-+2.04 93.69+-0.09 97.89--0.05 98.11-+0.12

2 9.68 A1 94.26-0.03 08.61+0.01 : (.01

Additive 20 9.68-+)4.26)R.61 L 98.69-+0).01

40 9.74+0.12 91.86+0.03 97.78+0.27 92.78+0.04

Extension: QBGMD

« In distributed setting, gradient updates are often compressed to reduce
communication cost.

Lemma 4. Let Cp, : RY — RY be coordinated sparse approximation operator as described in Algorithm 2 and Q4 : R* —
R? be a randomized quantization operator, then C := Cr(Qs(x)) is also a contractive compression with § = (1 — ,.‘"3;\,3)5
i.e. for every x € R%:
. k ;
2 2
Ee, 0.llx - CIIP < 1= (1= Ao | I

* Now, this lemma immediately gives a communication efficient version of our
algorithm referred as Quantized BGMD (QBGMD) where the clients

communicate only quantized gradients.

« The convergence rates are identical i.e. Theorem 1,2 hold with:
k
0<&<(1=Prs)y)

Extension: FedBGMD

Algorithm 3 FL-BGMD

1: Input: stepsize , number of iterations 7", synchronization rounds Zr, accuracy of the GM oracle {€}{';
2: initialize: x, = x}, = y{, m{, = 0 forall i € [n]\B
3: for t=0,..., T —1do

4: On Clients:
5: fori=1,..., n in parallel do
6: ifi € G then
7: gl = VF,(yi, z!) (computing the local stochastic gradient g})
8: Yiios =¥i—78 (local first-order update)
9: ift + 1 & Zp then
10: X¢+1 = Xt Yisq = Yizos (updating only the local model)
else
12: c; = Q(X; — ¥;.0.5) (sending the message c; to the server)
13: Yii1 = Xi41 (receive the aggregated model from the server)
14: end if
15: else ‘
16: g,=0 c; =M VicB (arbitrary messages)
17: end if
18: end for
19: At Server:
20: ift +1¢Zp then
21: X¢+1 = X¢, (no updates to the global model)
22: else
23: G: e R4 st Gli,)| =ci
24: P, :=vG; + M; (server error correction)
25: A, :=Cr(G;) (Run Algorithm 2)
26: M;., =P, — A, (update server residual)
27: g: := GM(e, A;) (Robust Aggregation in R¥)
28: X171 :=X; — g (Global model update)
29: end if

30: end for

Convergence Guarantee FedBGMD

Theorem 3 (Non-convex). Consider the general case where the functions f; corresponding to non-corrupt samples i € G
in (16) are non-convex and smooth (Assumption 2). Define, Ry := f(xg) — f(x") where X™ is the true optima and x is
the initial parameters. Run Algorithm 3 with compression factor (1 — 3;\._5)5 < & < 1(Lemma 5), learning rate v = 1/2L
and e—approximate GM(-) oracle in presence of a—corruption (Definition 1) for T iterations. Then the iterates satisfy:

TI | ZZ E|IV£(y)l® SR" + 8Lyo? + 24L%y*H?0” [1 & (15_25)]
Tl =0 icG (17)
23()—1|IT|H20'2 1+ -l(l - {2) 48‘1’1‘]62
T(1-a)? Iz V2T|G[2(1 - a)?

Theorem 4 (Non-convex under PLC). Consider that functions f; in (16) are non-convex and also satisfies the Polyak-
Lojasiewicz Condition (Assumption 3) with parameter j1. Define, Ry = f(Xq) — f(x*) where X* is the true optima and x
is the initial parameters. After T iterations Algorithm 3 with compression factor (1 — 31.)% < & < 1(Lemma5), learning
rate v = 1 /4L and e—approximate GM(-) oracle in presence of a—corruption (Definition 1) satisfies:

1 , o 10 - f* 71T 16LHyo? 40L? 4(1 — &2
WZEHS’%—X*HZS U/ (xo) f)[l—“—’] = v H?o 2[1+—(5)}

Tog 2 p? p? &
i . : (18)
N 3072H2%0? i+ 4(1 - £?) 64¢>
1 (1 - a)? £ #*?|G2(1 -)’
or a global optimal solution x> € X*. Here, yiy = e w,y: with weights given as w; = (1 — i
T Wr t=) t z

o s T-1
‘IT = t=0 Wy.

