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• Sparse linear regression 

• Unknown sparse signal                        , 

• Vector of observations 

• Full rank coefficient matrix                        , 

• Observation noise vector          

• Sparse linear regression as an optimization task

• A non-convex NP-hard program

• Efficient approximations:

– Convex relaxation vs greedy methods

Introduction
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• Replacing     -norm constraint problem with a    - norm 

optimization

• A related formulation: Least Absolute Shrinkage and 

Selection Operator (LASSO)

• Having near orthonormal columns guarantees perfect 

reconstruction with high probability [Candes et. al., 2006]

– Sampling complexity 

• Often computationally challenging in practice

Convex Relaxation Methods
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• Successively identifying columns of   which correspond 

to non-zero components of 

• Popular methods: Orthogonal Matching Pursuit (OMP) 

and its variants, e.g., stage-wise OMP and subspace 

pursuit

• Selection criterion relies on correlation with a residual 

vector 

• Having near orthonormal columns guarantees perfect 

reconstruction with high probability [Tropp et. Al., 2007]

– Sampling complexity 

Greedy Methods
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• Dates back to 1980, but recent in compressed sensing

• Selection criterion relies on minimizing approximation 

error

• Empirically shown to outperform     and OMP for an        

with correlated columns [Soussen et. Al., 2013]

• More complex than OMP and more challenging to 

analyze

Orthogonal Least-Squares (OLS)
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• Sufficient condition on recovery properties of OLS from 

random linear measurements

• Improved OLS-based algorithms

Contribution
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Theorem

For                         or                         , OLS can recover     in                                          

iterations from                              noiseless measurements 

with probability of success exceeding            .

Sampling Complexity of OLS
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1. Reducing complexity of OLS

– : Selected column in current iteration

– : Projection onto span of previously selected columns

– A recursion for 

– Equivalent selection criterion

2. Selecting    indices in each iteration

Toward Improved OLS
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A. Initialize                                                      

B. Repeat for

1.

2. Update set of selected indices

3. Update the projection matrix       using recently selected indices

,                                            ,

C.  Find the recovered signal

Generalized OLS Algorithm
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• Cost per iteration

– Step 1:

total cost 

– Step 3:                     ,                                            , 

total cost

• Worst case complexity                  Assuming

• In practice terminates much sooner than reaching the 

predetermined maximum number of iterations

Computational Complexity
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• Accelerated recursion and selection criterion

where

• Worst case complexity               vs  

Accelerated OLS
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AOLS vs OLS

Comparison on required number of operations
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• Setting

– Number of noiseless measurements 

– Dimension of unknown vector

– Coefficient matrix 

• Benchmarking methods

– OMP

– OLS

– LASSO

– -Minimization via CVX

– Generalized OLS with 

Results
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Normally Distributed Sparse Vector

Results

(a) Exact Recovery Rate (b) Running time
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Results

(a) Exact Recovery Rate (b) Running time

-Valued Sparse Vector
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-Valued Sparse Vector

Results

(a) Exact Recovery Rate (b) Running time
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• Sampling requirements of OLS for perfect recovery

• Improved OLS-based schemes

• Performance gain while being computationally more

efficient than LASSO and

• Exploring the case of correlated matrices

Conclusion
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Thank you for your Attention! 
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Appendix Slides
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• the sub-matrix of     constructed by selecting of   its 

columns 

• pseudo-inverse of

• the projection matrix onto the span of the 

columns of      , and 

Toward Improved OLS
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(a)

(b) Idempotent property

Toward Improved OLS



Sparse Linear Regression via Generalized Orthogonal Least-Squares Hashemi and Vikalo

• Equivalently

• Following the recursive relation and idempotent property

Selecting new indices
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Accelerated OLS


