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Problem motivation

* Decentralized optimization problems: all clients in the network to
collaboratively learn the model via communication

Internet of things (loT) Communication network

* Potential issues on privacy, unreliable communication and resource constraint



Problem formulation

Decentralized problems over directed and time-varying networks:
n 100 =13 A

* The agents collaborate to solve the problem by exchanging information
over a network

* The network is modeled by a time-varying directed graph, G(t) = (|n|,&E(t))

* The exchanged information is compressed before communication



Existing work

Algorithm Directed network? Time-varying network? Compression?

Directed decentralized

gradient descent [1] Yes No No
Gradient-Push [2] Yes Yes No
Quantized decentralized Yes No Yes

gradient descent [3]
This work Yes Yes Yes
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[3]: H. Taheri, A. Mokhtari, H. Hassani, and R. Pedarsani, “Quantized decentralized stochastic learning over directed graphs,” in International
Conference on Machine Learning (ICML), 2020.



Challenges

* Communication imbalance in directed time-varying networks

* Bias induced by the compression operator

Compression operator —uniformly select k out of d entries from a d-dimensional
message:
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Elementwise update:
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Assumptions

The mixing matrices, stepsizes, and the local objectives satisfy:

The product of mixing matrices, M,,((k+ 1)B — 1 : kB), has a non-zero
spectral gap.

For a fixed € € (0,1), the set of all possible mixing matrices {M! } is a
finite set.

The sequence of stepsizes, {a;}, is non-negative and satisfies > ,_ a; =
o0 9
00, > Qi < 00.

Each entry of the gradient is bounded ( |¢ | < D).

Network joint
connectivity

Mixing matrix
weight policy

Step size

Bounded
gradient



Convergence result

Suppose the previous assumptions hold. Let x* be the unique optimal solu-
tion and f* = f(x*).
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where D' = VdD and z' = 23" xt 4+ 25" i

For the stepsize a; = O(1/+/t), the algorithm attains the convergence rate

(L),



Simulation — linear regression

Decentralized linear regression with 10 agents

10°?

10! 4

109 +

Residual

Q-Grad-Push
Q-De-DGD
g=1
— g=0.03
— g=0.05
q=0.07
— g=0.09

10000 15000 20000 25000 30000 35000

Joint connectivity, B=3

10°
X . 10! 4
Algorithm with
different 10° 5
sparsification 5104
levels 7
o 1072
103
1074
1072

Q-Grad-Push
Q-De-DGD
g=1
—_— g =0.03
—— g=0.05
q=0.07
— q=0.09

2000 4000 6000 8000 10000 12000

iteration t

Strong connectivity, B=1

Algorithm with
different
sparsification
levels

Algorithm converges faster with stronger connectivity and smaller sparsification level.



Simulation — logistic regression

Decentralized logistic regression with 10 agents

o e e — —— -
05 / os _%‘(__v
Q-Grad-Push Q-Grad-Push
Q-De-DGD . . Q-De-DGD . .
306 a=1 Algorithm with 206 g=1 Algorithm with
[ . -
2 — q=001 different < — q=00 different
@ — g=0.03 e . ] — g=0.03 . .
§ 04 — =005 sparsification 5 041 — =005 sparsification
q=0.07 levels G=0.07 levels
0.2 0.2
0.0 T T T T T 0.0 T T T T T T T
5 10 15 20 25 30 20 40 60 80 100 120 140
iteration t iteration t
Strong connectivity, B=1 Joint connectivity, B=5

Algorithm reaches higher accuracy faster with stronger connectivity and smaller
sparsification level.



Conclusion and future work

* Proposed a communication-sparsifying algorithm for decentralized
convex optimization over directed time-varying graphs.

* Proved the convergence rate of the proposed algorithm.
e Justified the performance of the proposed algorithm.

Future work

* Apply stochastic variance-reduced gradient method to the
decentralized algorithm to reach faster convergence rate.

* Extend the algorithm to non-convex optimization problems.
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