

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering

No-Regret Learning with High-Probability in

Adversarial Markov Decision Processes

Mahsa Ghasemi*, Abolfazl Hashemi*, Haris Vikalo, Ufuk Topcu

Uncertainty in Artificial Intelligence (UAI) July 27th - July 29th, 2021

Sequential Decision Making

StarCraft

Sequential Interaction with the environment

Learning from a fixed reward

Ghasemi, Hashemi, Vikalo, Topcu

000

Sequential Decision Making with Varying Tasks

How can we design online algorithms with high probability guarantees for varying tasks?

Online Policy Learning with Implicit Exploration

Contributions:	 A novel optimistically-biased reward estimator for implicit exploration
	 Policy search using online mirror descent (OMD)
	 Sublinear regret bound with high probability

Adversarial Markov Decision Process (A-MDP)

Uniform ergodicity:

For every policy over the MDP, the convergence rate of state distributions to a unique stationary distribution is exponentially fast.

$$\|\nu_1 \mathcal{P}^{\pi} - \nu_2 \mathcal{P}^{\pi}\|_1 \le e^{-\frac{1}{\tau}} \|\nu_1 - \nu_2\|_1$$

Agent's Policy Representation via Occupancy Measure

Looking for a time-varying stochastic policy $\pi_t : S \times A \rightarrow [0, 1]$

Occupancy measure: the probability induced over state-action pairs by executing a policy, asymptotically.

$$\rho^{\pi}(s,a) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \Pr(\mathbf{s}_t = s, \mathbf{a}_t = a | \pi)$$

Stochastic stationary policy given an occupancy measure

$$\pi^{\rho}(a|s) = \frac{\rho(s,a)}{\sum_{a' \in \mathcal{A}} \rho(s,a')} , \quad \forall (s,a) \in \mathcal{S} \times \mathcal{A}$$

Regret Minimization

Optimistic Loss Estimator

Bandit feedback — Estimating the loss of all state-action pairs

Goal: Obtain a low-variance loss estimator

A novel **optimistically biased estimator** for the loss function:

$$\hat{\boldsymbol{\ell}}_t(s,a) := \frac{\ell_t(s,a)}{\boldsymbol{\nu}_{t|t-N}(s)\boldsymbol{\pi}_t(a|s) + \gamma} \mathbb{I}\{\boldsymbol{s}_t = s, \boldsymbol{a}_t = a\}$$
moving-window estimate of
state distribution
exploration parameter

Optimistically biased

$$\mathbb{E}\left[\hat{\boldsymbol{\ell}}_t(s,a)|t-N\right] \le \ell_t(s,a)$$

Implicit exploration

Estimation-window parameter *N* delays the policy update which leads to lower variance of the random regret.

Policy Optimization via Online Mirror Descent

Goal: Compute a new policy from the estimated loss function

An OMD algorithm utilizing the proposed loss estimator:

No-Regret Learning with High-Probability

Result: Establishing sublinear regret bounds both on expectation and with high-probability

Theorem: (high-probability regret bound for uniformly ergodic A-MDP) Let $\delta \in (0, 1)$. With probability at least $1 - \delta$,

No-Regret Learning with High-Probability in Adversarial Markov Decision Processes

Mahsa Ghasemi, Abolfazl Hashemi, Haris Vikalo, Ufuk Topcu

supported in part by NSF ECCS grant 1809327, DARPA grant D19AP00004, and AFRL grant FA9550-19-1-0169