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Sequential Decision Making
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Sequential Interaction with 
the environment

Learning from a fixed 
reward

Offline: access to 
a lot of data

DeepMind

StarCraft
KUKA

Tesla



Sequential Decision Making with Varying Tasks
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Evolving environment 
and task

Safety-critical 
operation

Limited feedback from 
the environment 

How can we design online algorithms with high probability guarantees for varying tasks?

lynda.com NASA



Online Policy Learning with Implicit Exploration
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Contributions:

• A novel optimistically-biased reward estimator for implicit exploration

• Policy search using online mirror descent (OMD)

• Sublinear regret bound with high probability

Play an action

Reward 
estimator 

Online mirror 
descent (OMD)

Policy update

Limited, time-
varying feedback

Estimated 
reward

Occupancy measureNew policy

NASA

Feng et al., 2020
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finite state space

probabilistic 
transition function

finite action space

time-varying loss 
function

Adversarial Markov Decision Process (A-MDP) 

state

action
loss
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Bandit feedback

Uniform ergodicity: 

For every policy over the MDP, the 
convergence rate of state distributions to a 
unique stationary distribution is 
exponentially fast.



Agent’s Policy Representation via Occupancy Measure
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Looking for a time-varying stochastic policy

Occupancy measure: the probability induced over state-action pairs by executing a policy, 
asymptotically.

Stochastic stationary policy given an occupancy measure



Regret Minimization
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task t
(state, action)

(loss)

Unknown and time-varying loss 
function (A-MDP)

Bandit feedback

Learn a policy with sublinear regret:

Question: Can we obtain low regret 
with high probability?

best fixed policy 
in hindsight

Max reward

Earned reward

Time



Optimistic Loss Estimator
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Estimating the loss of all state-action pairsBandit feedback

Goal: Obtain a low-variance loss estimator

A novel optimistically biased estimator for the loss function:

exploration parameter

Implicit exploration
Optimistically biased

moving-window estimate of 
state distribution

Estimation-window parameter N delays 
the policy update which leads to lower 

variance of the random regret.



Policy Optimization via Online Mirror Descent
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Goal: Compute a new policy from the estimated loss function

Two-step procedureConstrained optimization

policy changeloss

An OMD algorithm utilizing the proposed loss estimator:
learning rate unnormalized KL divergence



No-Regret Learning with High-Probability
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Result: Establishing sublinear regret bounds both on expectation and with high-probability

Theorem: (high-probability regret bound for uniformly ergodic A-MDP)

Let                . With probability at least         , 

mixing timetime horizon number of states number of actions
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