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• Selection/identification of the best element with respect to some criterion, from a set of
alternatives
◦ cost/loss minimization

min
w

f (w) s.t. w ∈ X (1)

◦ reward/utility maximization
max
w

U(w) s.t. w ∈ X (2)

• Concerned with modeling, Algorithms, Assessment, all pertinent to ML!
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• A class of Machine Learning (ML) methods based on Artificial Neural Networks (NNs) that
enable learning/identifying useful patterns from data, and applying those patterns to new data

• Many application domain, most notably generative AI models (Chatgpt, Stable Diffusion, etc.)
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Deep Learning (Cont’d)
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• As defined by one of the pioneers of the field

• Indicating the central role of the right kind of optimization!
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Why OPT4DL?
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• Two main reasons
◦ The learning in DL and ML boils down to optimization problems
◦ A lot of mysteries in getting the DL models work (even if fine-tuning a pre-trained model). Thus,

given the first reason, right kind of optimization may lead to understanding and demystifying
them.
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The Intimate Connection of Learning and Optimization
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• Typical ML/DL task

min
w

f (w) :=
1
n

n∑
i=1

fi (w) s.t. w ∈ Rd (3)

where
◦ n is the size of training data (could be billions)
◦ d the number of model parameters (could be billions), typically overparameterized: d > n

◦ L the average loss is non-convex
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Mystery: Why/How Adam Works?
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• Adam: an optimization algorithm for DL training
• Paper unfortunately had a mistake in its theory
• It sometimes fails to solve easy problems
• Yet, very successful and ubiquitous in practice
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Mystery: Why Overparameterization is Good?
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• Traditional ML theory seems to require d must be smaller than n to avoid overfitting, i.e., not
generalizing well to unseen/new data

• But, in practice d ≫ n seems to generalize even better

• Magically, from many available solutions, DL model reaches a great one
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Why Developing an Understanding is Essential?
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• DL is and probably will continue to be a useful tool in many fields across science and
engineering

• We deal with more than one task and one dataset
• DL training is costly: current success reliant on expensive hardware and high energy

consumption

• Societal concerns/implications of DL and how to mitigate/resolve them
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Why (the right kind of) Optimization may be Helpful?
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• Learning and Optimization are entwined

• Successful Optimization is a main pillar of successful DL

• Modern optimization theory could provide actionable insights about complex, non-convex losses
in DL and their implications to both convergence and generalization
◦ convergence: finding a solution that matches the training data
◦ generalization: good performance on unseen data
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Our Main Goals in OPT4DL Class
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• Learning about learning techniques, and potentially developing new ones

• Discuss OPT4DL theory, methods, and heuristics

• Pose why questions and discuss what we already know, what we need to know and how to
approach doing so

• Leverage OPT4DL for resource-efficient DL training

• Discuss some pertinent practical and societal concerns and how to integrate them with our
optimization methods
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• Abolfazl Hashemi, Ph.D. (email: abolfazl@purdue.edu)

• Assistant Professor at The Elmore Family School of Electrical and Computer Engineering at
Purdue University, Since Fall 2021

• Research Goal: advance the field of Large-Scale Optimization provides actionable insights from
the perspective of this foundational field to innovate multiple domains within ML/AI

• Recent Applications: Federated Learning, Medical Image Analysis, NextG Manufacturing, and
Cyber-Physical Systems
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• Consider
min
w

f (w) s.t. w ∈ Rd (4)

• w∗ is a stationary point if the gradient (derivative) of f at w∗ is zero:

∇f (w∗) = 0 (5)

• If further ∇2f (w∗) ≻ 0, then w∗ is a local minimum

• If further 0 ≻ ∇2f (w∗), then w∗ is a local maximum

• A stationary (or even a local minimum) is not necessarily an optimal solution
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Convex Sets
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• A set X is convex if for all xi in X and all m ≥ 1

m∑
i=1

wixi ∈ X (6)

where

wi ≥ 0,
m∑
i=1

wi = 1 (7)

• In other words, the convex combination of all points belong to the set as well.
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Convex Functions
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• f is (strongly) convex if for all xi

f (
m∑
i=1

wixi ) ≤
m∑
i=1

wi f (xi ) (8)

where

wi ≥ 0,
m∑
i=1

wi = 1 (9)

(< for strongly convex case instead of ≤)
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Convex Functions (Cont’d)
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• f is (strongly) convex if all x and y

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+µ

2
∥y − x∥2 (10)
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Convex Functions (Cont’d)
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• f is (strongly) convex if for all x
∇2f (x) ⪰ 0 (11)

(≻ for strongly convex case instead of ⪰)
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Why Convexity is Nice?
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• Local information provides global information

• Any stationary point w∗ (can be identified locally) is a global minimum (a property requiring
global information about the function in general)

• Proof is easy to see from the definition

f (y) ≥ f (w∗) + ⟨∇f (w∗), y − w∗⟩ (12)

and noting ∇f (w∗) = 0

• Furthermore, A strongly convex function has a unique minimizer
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Convergence Notions
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• We are interested in establishing
err(w̃) ≤ ϵ (13)

for some target accuracy ϵ and a notion of convergence err(·)
• Our methods achieving this goal are typically iterative, i.e., they find an approximate solution

in T iterations

• Typically better accuracy (lower ϵ) requires larger T
◦ Sublinear rates: T = Ω(ϵ−a), for some a > 0
◦ Linear rates: T = Ω(log 1

ϵ
)

• Typical examples of err(w̃)

◦ approximate first-order: ∥∇f (w̃)∥ ≤ ϵ, for some a > 0 (General functions)
◦ Low suboptimality gap: f (w̃)− f ∗ ≤ ϵ (Convex)
◦ Low point-wise error ∥w̃ − w∗∥ ≤ ϵ (Strongly convex functions)
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Optimization as a Fixed Point Problem
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• Consider
min
w

f (w) s.t. w ∈ Rd (14)

• A necessary condition for optimality is first-order stationarity ∇f (w∗) = 0

• Equivalently
η∇f (w∗)−w∗ = −w∗ (15)

• Equivalently, the problem is to find the fixed points of g(w) := w − η∇f (w)

• The simplest method is the Fixed Point Iteration wt+1 = g(wt), for all t = 1, . . . ,T which
leads to

wt+1 = wt − η∇f (wt) (16)

• This method is called Gradient Descent (GD) with stepsize/learning rate η > 0 which serves as
the foundational of all DL training methods.
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Machine Learning: Learning from Data
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• We have D = {z1, . . . , xn} a collection of n training data points/samples zi ’s

• Think of zi as a collection of features and their corresponding label, that is zi = (xi , yi )

◦ xi ∈ Rp is a vector of p features, e.g., an image with p pixels
◦ yi ∈ R is the label for the i th sample, e.g., whether the image is a car or not

• Typically, ML problems are one of the followings
◦ Supervised Learning
◦ Unsupervised Learning
◦ Reinforcement Learning
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ML Workflow
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• Assume there exists some true but unknown rule between features and labels yi = A∗(xi ) for all
i

• Choose a parametric model A(·,w) such that for some w∗, A(·,w∗) ≈ A∗(·)
• Training: fit the model to D to find w∗

• Let ℓ(w , zi ) denote the loss/cost of a model w fitting sample i

◦ Example: quadratic loss ℓ(w , zi ) =
1
2 (A(xi ,w)− yi )

2

• Training as an optimization problem

min
w∈Rd

f (w) =
1
n

n∑
i=1

ℓ(w , zi ) (17)

• That is, minimize the average loss over the training data

• Let w∗ denote the optimal solution
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Performance on Unseen Data
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• If training successful, model will fit training data well

• To assess performance on new, unseen data (data /∈ D) we make an assumption:
◦ New and training data belong to the same universe
◦ Let z be a new data, then z ∼ pz and D ∼ pz for some data distribution pz

• Measure of performance
min
w∈Rd

f̄ (w) = Ez∼pz [ℓ(w , zi )] (18)

how well we perform on average over the entire universe (not just over the training data)

• Note that f and f̄ are not necessarily the same, f an empirical approximation of f̄
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Example: A Discrete Universe
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• Let pz be discrete and pz(Z = zi ) =
1
n

• That is, our data universe is discrete and each data is equally likely to be observed

• Then, f and f̄ are
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Population v.s. Empirical Risk
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• To ensure performance on all data (both seen and unseen), we aim to minimize the Population
Loss/Risk

w̄ := arg min
w∈Rd

f̄ (w) = Ez∼pz [ℓ(w , zi )] (19)

• But, all we can do in practice is to minimize the Empirical Loss/Risk

w∗ := arg min
w∈Rd

f (w) =
1
n

n∑
i=1

ℓ(w , zi ) (20)

as pz is unknown

• This approach is called Empirical Risk Minimization (ERM)
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How good is Approximately Solving ERM?
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• Let ŵ be an approximate/suboptimal solution to ERM

• And recall w̄ and w∗ are the minimizers of Population loss (f̄ ) and Empirical loss (f ),
respectively.

• We need to bound the Estimation Error: f̄ (ŵ)− f̄ (w̄)

f̄ (ŵ)− f̄ (w̄) = f̄ (ŵ)±f (ŵ)± f (w∗)± f (w̄)− f̄ (w̄)

= f (ŵ)− f (w∗)

+ f̄ (ŵ)− f (ŵ)

+ f (w∗)− f̄ (w∗)

+ f (w∗)− f (w̄)

(21)

• estimation error ≤ optimization error +2× empirical approximation error

• Controlled by better training algorithms and better/larger datasets
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Representation Error
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• Recall w̄ is the minimizer of Population loss (f̄ )

• Recall we assume y = A∗(x)

• If our model is not powerful enough, even by minimizing the Population Loss, we may not fully
learn the feature-label relations

• Mathematically, A∗(·) and A(·, w̄) are not necessarily the same

• Representation error = f̄ (w̄)− fopt where fopt is the loss if we knew the true relation (we can
assume fopt ≈ 0)

• Typically, representation error decreases as DL models become deeper and/or wider (more
powerful)

• Total Learning Error = Representation Error + Optimization/Training Error + Empirical
Approximation Error
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Examples of Models
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• Binary Classification
◦ Features: x ∈ Rd

◦ Labels: y ∈ {−1,+1}
◦ Linearly separable classes: ŷ = sign(x⊤w)

◦ 0-1 loss: ℓ(w , z) = I[y ̸= sign(x⊤w)]

◦ Hinge loss: ℓ(w , z) = max(0, 1− x⊤w)

◦ ERM with hinge becomes a convex task
◦ The linear relation x⊤w could be replaced by a DL model A(x ,w), resulting in a nonconvex

training tasks
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Examples of Models (Cont’d)
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• Linear Regression
◦ Features: x ∈ Rd

◦ Labels: y ∈ R
◦ Linear dependency: y = x⊤w + e where e ∼ N (0, σ2)

◦ Square loss: ℓ(w , z) = 1
2 (y − x⊤w)2

◦ ERM becomes a convex task
◦ The linear relation x⊤w could be replaced by a DL model A(x ,w), resulting in a nonconvex

training task
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Examples of Models (Cont’d)
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• Logistic Regression
◦ Features: x ∈ Rd

◦ Labels: y ∈ {0, 1}
◦ Sigmoid/logistic activation:

y =
1

1 + exp(−x⊤w)
(22)

◦ 1
1+exp(−x⊤w)

is thought as the probability that the label of x is 1.
◦ Binary Cross-entropy loss:

ℓ(w , z) = −y log
1

1 + exp(−x⊤w)
− (1− y) log(1− 1

1 + exp(−x⊤w)
) (23)

◦ ERM becomes a convex task
◦ The linear relation x⊤w could be replaced by a DL model A(x ,w), resulting in a nonconvex

training task
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Gradient Descent: Performance
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Gradient Descent (GD): A Basic Optimization Method
Machine
Intelligence
Networked
Data
Science

&

• Consider
min
w∈Rd

f (w) (24)

• We talked about a simple method based on Fixed Point Calculation called Gradient Descent
(GD)
◦ Initialize w1 and Learning rate 0 < η ≤ 1
◦ For t = 1, . . . ,T iterations

wt+1 = wt − ηgt (25)

where gt = ∇f (wt)

• Think of gt as the update vector at time t
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Gradient Descent: Intuition
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• Intuition: Gradually follow the direction of decrease

• If f (x) ≥ f (y), by Taylor’s theorem, we have locally

f (y) ≈ f (x) + ⟨y − x ,∇f (x)⟩
0 ≥ f (y)− f (x) ≈ ⟨y − x ,∇f (x)⟩
0 ≥ ⟨y − x ,∇f (x)⟩

(26)

That is, gradient locally gives us the direction of increase.
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How good is GD on Convex Functions
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• Recall by convexity we can bound the suboptimality of a solution wt , i.e. f (wt)− f (w∗)

f (w∗) ≥ f (wt) + ⟨w∗ − wt ,∇f (wt)⟩ (27)

or equivalently
f (wt)− f (w∗) ≤ ⟨∇f (wt),wt − w∗⟩ (28)

• Thus, it suffices to bound the above inner-product

Proposition

For any sequence of update vectors g1, . . . , gT ∈ Rd and any vector w∗ ∈ Rd , the update rule
wt+1 = wt − ηgt satisfies

T∑
t=1

⟨gt ,wt − w∗⟩ ≤ 1
2η
∥w1 − w∗∥2 + η

2

T∑
t=1

∥gt∥2 (29)
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Proof of the Proposition
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• Let us consider the evolution of ∥wt − w∗∥2 and leverage the form of the update

∥wt+1 − w∗∥2 = ∥wt − ηgt − w∗∥2

= ∥wt − w∗∥2 + 2η⟨gt ,wt − w∗⟩+ η2∥gt∥2
(30)

• Rearrange

⟨gt ,wt − w∗⟩ = ∥wt − w∗∥2 − ∥wt+1 − w∗∥2

2η
+

η

2
∥gt∥2 (31)

• Summing over t

T∑
t=1

⟨gt ,wt − w∗⟩ =
T∑
t=1

∥wt − w∗∥2 − ∥wt+1 − w∗∥2

2η
+

T∑
t=1

η

2
∥gt∥2 (32)
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How good is GD on Convex Functions (Cont’d)
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• Recall in GD: wt+1 = wt − η∇f (wt) (that is, gt = ∇f (wt))

• By convexity f (wt)− f (w∗) ≤ ⟨∇f (wt),wt − w∗⟩
• Thus, by our proposition

Accumulated suboptimality =
T∑
t=1

f (wt)− f (w∗) ≤ 1
2η
∥w1 − w∗∥2 + η

2

T∑
t=1

∥∇f (wt)∥2 (33)
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G -Lipschitz Functions
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Definition
A function f : X → R is G -Lipschitz if and only if

|f (x)− f (y)| ≤ G∥x − y∥ (34)

for some G ≥ 0 and all x , y ∈ X .

• Intuition: Bounded sensitivity and a measure of continuity of a function

• By rearranging we see the slope is bounded

|f (x)− f (y)|
∥x − y∥

≤ G (35)

• Thus, if the function is differentiable, equivalently a function is G -Lipschitz iff ∥∇f (x)∥ ≤ G
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G -Lipschitz Functions: Examples
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• f (x) =
√
x

◦ x ∈ (0, 1]
◦ x ∈ [0.5, 1]

• f (x) = |x |
◦ x ∈ R

• f (x) = ex

◦ x ∈ R
◦ x ∈ [a, b]

• f (x) = x2

◦ x ∈ R
◦ x ∈ [1, 10]
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Implications for GD
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• Assume f is G -Lipschitz, i.e., ∥∇f (x)∥ ≤ G

• Let D = ∥w1 − w∗∥
• From our proposition

T∑
t=1

f (wt)− f (w∗) ≤ 1
2η
∥w1 − w∗∥2 + η

2

T∑
t=1

∥∇f (wt)∥2 (36)

Theorem
Assume f is G -Lipschitz and convex. GD with the update rule wt+1 = wt − η∇f (wt) and
learning rate η = D

G
√
T

satisfies the following bound on the incurred average suboptimality

1
T

T∑
t=1

f (wt)− f (w∗) ≤ DG√
T

(37)
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How to Output a Solution?
Machine
Intelligence
Networked
Data
Science

&

• In practice we output the last solution, i.e. ŵ = wT as it tends to have a better performance
◦ We need a different analysis or more structures to prove its performance

• Alternatively, let ŵ = 1
T

∑T
t=1 wt

◦ By convexity

f (ŵ)− f (w∗) ≤ f (
1
T

T∑
t=1

wt)− f (w∗) ≤ 1
T

T∑
t=1

f (wt)− f (w∗) ≤ DG√
T

(38)

• Alternatively, let ŵ ∼ U{w1, . . . ,wT}
◦ On expectation, this randomized solution satisfies

Eŵ [f (ŵ)− f (w∗)] =
1
T

T∑
t=1

f (wt)− f (w∗) ≤ DG√
T

(39)
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Analyzing the Bound
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Theorem

GD with the update rule wt+1 = wt − η∇f (wt) and learning rate η = D
G
√
T

satisfies

Average Suboptimality ≤ DG√
T

= O(1/
√
T ) (40)

• The regulating role played by the learning rate, η
• Recall w ∈ Rd , so no explicit dependence on the intrinsic dimension
• d , however finds its way in ∥∇f (x)∥ ≤ G and D = ∥w1 − w∗∥, typically
• Iteration Complexity: Number of iterations T to find an ϵ-accurate solution

T ≥ D2G 2

ϵ
= Ω(1/ϵ2)⇒ Average Suboptimality ≤ ϵ (41)

• Can we do better?
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Introduction to Stochastic
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Motivation
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• In ML/DL our loss function typically has the form

f (w) = Ez [ℓ(w , z)] (42)

(recall, think of it as average loss over data, i.e., 1
n

∑n
i=1 ℓ(w , zi ))

• To run GD, we need the gradient ∇Ez [ℓ(w , z)], which could be difficult to calculate
◦ Large n means running out of memory and/or lots of calculations
◦ In some cases we may not be able to calculate the expectation exactly (hard integrals)

• The main idea behind most training methods is to find good estimators such that
∇̂ ≈ ∇Ez [ℓ(w , z)]
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Proposition
If ℓ is a differentiable function of w and z , we can switch the order of derivative and
expectation:

∇Ez [ℓ(w , z)] = Ez [∇ℓ(w , z)] (43)

• This leads to leveraging sample approximation to estimate the expectation

z1, . . . , zB ∼ pz , Ez [∇ℓ(w , z)] ≈ 1
B

B∑
j=1

∇ℓ(w , z j) (44)
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Stochastic Gradient Descent (SGD)
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• Initialize w1, learning rate 0 < ηt ≤ 1, and batch size B ≥ 1

• For t = 1, . . . ,T perform:
◦ Sample a mini-batch of samples z1

t , . . . , z
B
t ∼ pz

◦ Form the update vector gt = 1
B

∑B
j=1∇ℓ(wt , z

j
t )

◦ Update the parameters wt+1 = wt − ηgt
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Which Estimators are Good?
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• We like estimators that have low bias (ideally zero) and low variance

Bias
Let X be a quantity and Y a Random Estimator of X . The bias of Y is defined as

BiasY = ∥X − E[Y ]∥ (45)

Notably, Y is unbiased if X = E[Y ].

Variance
Let X be a quantity and Y a Random Estimator of X . The variance of Y is defined as

Var(Y ) = E∥Y − E[Y ]∥2 (46)

Notably, if Y is unbiased, i.e., X = E[Y ], we have Var(Y ) = E∥Y − X∥2.
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Which Estimators are Good? (Cont’d)
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• We can characterize the total error of an estimators using bias-variance decomposition:

Total error = E∥Y − X∥2 = ∥X − E[Y ]∥2 + E∥Y − E[Y ]∥2 = bias plus variance (47)

• Averaging independent unbiased estimators could be useful in lowering the error

E∥Y1 + Y2

2
− X∥2 = E∥ (Y1 − X ) + (Y2 − X )

2
∥2 =

1
4
E∥(Y1 − X ) + (Y2 − X )∥2

=
1
4

(
E∥(Y1 − X )∥2 + E∥(Y2 − X )∥2 + E[⟨Y1 − X ,Y2 − X ⟩]

)

=
1
4

(
E∥(Y1 − X )∥2 + E∥(Y2 − X )∥2

) (48)
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Why SGD is a Good Idea?
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• Each estimator Yj = ∇ℓ(wt , z
j
t ) is an unbiased estimator of loss gradient if we sample from the

distribution

• The average of Yj ’s will also remain unbiased

• As B →∞, by strong law of large numbers our estimator 1
N

∑B
j=1 Yj (almost surely)

approaches the loss gradient.

• But B cannot be too large in practice when optimizing model parameters. Impact on training
and test errors?
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Stochastic First-Order Oracle (SFO)
Given the current parameter wt and the sample/data used in iteration t, i.e., zt , Oracle
returns an update vector gt which is conditionally unbiased with bounded variance:

Ezt [gt |wt ] = ∇f (wt), Ezt [∥gt −∇f (wt)∥2|wt ] ≤ σ2 (49)

for some 0 ≤ σ2 <∞.

• SFO enables formal study of not just SGD, but also more advanced training methods

• A simple way to model gradient calculation in practice

• We need the conditioning since wt is itself random: it depends on our (random) selection of
mini batches in previous iterations. In other words, wt is a function of z1, . . . , zt−1 (note the
exclusion of zt).

• Thus, the following expectations are equivalent: Ezt [·|wt ] ≡ Ezt [·|z1, . . . , zt−1]
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Performance of SGD
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Theorem
Assume f is G -Lipschitz and convex. Furthermore assume we have access to an SFO and that
z1, . . . , zT are statistically independent. Then, SGD with the update rule wt+1 = wt − ηgt
and learning rate η = D√

T (G2+σ2)
satisfies the following bound on the incurred average

suboptimality

Ez1,...,zT [
1
T

T∑
t=1

f (wt)− f (w∗)] ≤ D
√
G 2 + σ2
√
T

≤ DG√
T
+

Dσ√
T

(50)

• As our method is a randomized algorithm, our statement regarding its performance needs to be
stated either on expectation or with high confidence

• As we discussed, with larger batch sizes σ2 → σ2/B

• We can use either of 3 approaches to generate an output, that is (i) the last/best parameter
wT , (ii) averaging all parameters w1, . . . ,wT , and (iii) sampling one iterate at random
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• Recall after T iterations of mini batch SGD

error ≤ DG√
T

+
Dσ√
BT

(51)

• What is the best B if we fix the total computation budget, i.e., number of iterations times
number of stochastic gradient calculation per iteration: C = B ×T (also called number of SFO
calls)

• In terms of C , the error becomes

error ≤ DG
√
B√

C
+

Dσ√
C

(52)

Suggesting the best batch size is B = 1?

• Why mini batch SGD with B > 1 then?
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• Assume we have M machines and that the computing time scales linearly with M

τ =
C

M
(53)

• Assume M = B our batch size. Then, in terms of the computing time, the error becomes

error ≤ DG√
τ
+

Dσ√
τB

(54)

• Larger batch sizes plus parallel computation reduces the error faster

• Remark: an analysis based on worst case scenario

• B > 1 leads to lower variance and smoother convergence (less ups and downs)
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SGD in Practice (Reshuffling)
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Consider a training problem, i.e. ERM:

min
w

f (w) =
1
n

n∑
i=1

ℓ(w , zi ) (55)

• For e = 1, . . . ,E epochs do
◦ For t = 1, . . . ,K inner iterations do

1. form the mini-batch of samples z1
t , . . . , z

B
t ∼ pz

2. Form the update vector gt =
1
B

∑B
j=1∇ℓ(wt , z

j
t )

3. Update the parameters wt+1 = wt − ηgt

• Optionally, shuffle the data into a new random order)

Has been observed to lead to smoother loss decay and better generalization

This can be attributed to the lower variance of the resultant (and more complex) gradient
estimator, due to reshuffling
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Performance of SGD
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Theorem
Assume f is G -Lipschitz and convex. Furthermore assume we have access to an SFO and that
z1, . . . , zT are statistically independent. Then, SGD with the update rule wt+1 = wt − ηgt
and learning rate η = D√

T (G2+σ2)
satisfies the following bound on the incurred average

suboptimality

Ez1,...,zT [
1
T

T∑
t=1

f (wt)− f (w∗)] ≤ D
√
G 2 + σ2
√
T

≤ DG√
T
+

Dσ√
T

(56)
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Proof of Theorem
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• We will leverage our general proposition:

T∑
t=1

⟨gt ,wt − w∗⟩ ≤ 1
2η
∥w1 − w∗∥2 + η

2

T∑
t=1

∥gt∥2 (57)

with suitable conditional expectations to account for the randomization of SGD.

• Let z1:t denote z1, . . . , zt . We have by tower expectation, linearity of expectation, and the
unbiasedness property of the SFO

Ez1:t [⟨gt ,wt − w∗⟩] = Ez1:t−1 [Ezt [⟨gt ,wt − w∗⟩|z1:t−1]] = Ez1:t−1 [⟨Ezt [gt |z1:t−1],wt − w∗⟩]
= Ez1:t−1 [⟨∇f (wt),wt − w∗⟩]

(58)
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Proof of Theorem (Cont’d)
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• Recall, by convexity
f (wt)− f (w∗) ≤ ⟨∇f (wt),wt − w∗⟩ (59)

• Thus
Ez1:t−1 [f (wt)− f (w∗)] ≤ Ez1:t−1 [⟨∇f (wt),wt − w∗⟩] (60)

• Using the independence of samples used in each iteration (wt only a function of z1:t−1 and
independent from the future samples zt , . . . , zT )

Ez1,...,zT [f (wt)− f (w∗)] = Ez1:t−1 [f (wt)− f (w∗)] (61)

• Thus, by linearity of expectation and our general proposition

Ez1,...,zT [
T∑
t=1

f (wt)− f (w∗)] ≤ 1
2η
∥w1 − w∗∥2 + η

2

T∑
t=1

Ez1,...,zT ∥gt∥2 (62)
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Proof of Theorem (Cont’d)
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• For the second term note by the independence of the samples (gt only a function of wt and zt)

Ez1,...,zT ∥gt∥2 = Ez1,...,zt∥gt∥2 (63)

• By tower expectation

Ez1,...,zt∥gt∥2 = Ez1,...,zt−1 [Ezt−1 [∥gt∥2|z1, . . . , zt−1]] (64)

• We will now aim to use our unbiased SFO assumption with bounded variance,

Ezt−1 [∥gt∥2|z1, . . . , zt−1] = Ezt−1 [∥gt ±∇f (wt)∥2|z1, . . . , zt−1]

= Ezt−1 [∥∇f (wt)∥2|z1, . . . , zt−1] + Ezt−1 [∥gt −∇f (wt)∥2|z1, . . . , zt−1]

≤ G 2 + σ2

(65)
by Lipschitzness and bounded variance assumptions. Division by T finishes the proof.
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Beyond Convexity: (S)GD and
Smoothness



Beyond Convex Functions
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• So far, we discussed how GD and SGD perform if the function is convex

• Under Lipschitzness, both satisfy O(1/
√
T ) rate to find an approximate optimal solution

• In DL, however, the loss is nonconvex. Thus, we need to relax convexity

• Difficult goal! We thus also relax our notation of convergence to an approximate first-order
solution

E[f (ŵ)− f (w∗)] ≤ ϵ⇒ ∥∇f (ŵ)∥2 ≤ ϵ (66)

• This condition requires the existences of gradient. Thus, instead of Lipschitzness we require
another notion of functions’ sensitivity called smoothness
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Definition

A function f : Rd → R is L-smooth if its gradient is L-Lipschitz:

∥∇f (x)−∇f (y)∥ ≤ L∥x − y∥ (67)

for all x , y and some constant 0 ≤ L <∞.

• Recall that G -Lipschitzness, i.e. |f (x)− f (y)| ≤ G∥x − y∥ implied the slope of f is bounded by
G .

• Smoothness then means the slope of the ∇f , i.e., the second derivative of Hessian is bounded
by L.

• More formally, if the function is twice differentiable, all eigen values of the Hessians are
bounded:

−L ≤ λd := λmin(∇2f (x)), . . . , λ1 := λmax(∇2f (x)) ≤ L (68)

for all x .
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• f (x) = 1
2x

⊤Ax

• f (x) = ex
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Smoothness and Bounded Curvature
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• The condition |λi (∇2f )| ≤ L, i = 1, . . . d means the function has bounded curvature from
above and from below

• That is, we can upper bound the function by a convex quadratic function and lower bound the
function by a concave quadratic function at any point!

• Leading to the following sometimes more useful equivalent definition of smoothness

f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+ L

2
∥y − x∥2 RHS a convex quadratic function of x (69)

f (x) + ⟨∇f (x), y − x⟩ − L

2
∥y − x∥2 ≤ f (y) LHS a concave quadratic function of x (70)
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(S)GD and Smooth functions
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Let ∆ := f (w1)− f (w∗) denote the initial suboptimality.

Theorem (GD)

Assume f is L-smooth. then, GD with η = 1
L satisfies

1
T

T∑
t=1

∥∇f (wt)∥2 ≤
2L∆
T

= O(1/T ). (71)

Theorem (SGD)
Assume f is L-smooth. Furthermore assume we have access to an SFO and that z1, . . . , zT
are statistically independent. Then, SGD with learning rate η = min{ 1

L ,
√

2∆
Lσ2T } satisfies

Ez1,...,zT [
1
T

T∑
t=1

∥∇f (wt)∥2] ≤
2L∆
T

+2σ

√
2∆L

T
= O(1/

√
T ). (72)

OPT4DL, A. Hashemi, Purdue ECE



(S)GD and Smooth functions (Cont’d)
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• Dimension-free result

• Regulating role of η = 1
L for GD and η = min{ 1

L ,
√

2∆
Lσ2T } for SGD

• We can use either of 2 approaches to generate an output, that is (i) the last/best parameter
wT and (ii) sampling one iterate at random. The later implies Eŵ∥∇f (ŵ)∥2 ≤ 2L∆

T for GD and

Eŵ∥∇f (ŵ)∥2 ≤ 2L∆
T + 2σ

√
2∆L
T for SGD

• Iteration complexity of T = Ω(ϵ−1) for GD and T = Ω(ϵ−2) for SGD

• SGD bound consist of a higher order term (first term matching GD’s) and the dominant term
(second term due to stochasticity)

• Iteration complexity of T = Ω(ϵ−2) compared to T = Ω(ϵ−1) for GD

• Bound tight in general, but with more structures (present in DL optimization) we can show the
theoretical of benefits of advance training algorithms.
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GD: A new Perspective
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• So far we motivated GD from the fixed point calculation and following the direction of descent
locally perspectives

• Thanks to smoothness, we can develop a new perspective which also gives us a way to develop
better/generalized methods

• Consider minimizing f (w) iteratively. It is desired to update the parameter such that we always
make a progress:

f (wt+1) ≤ f (wt), ∀t (73)

That is, our method has the descent property.

• Going one step further, maximizing the progress is preferred:

max
wt+1

Pt := f (wt)− f (wt+1) (74)

• A general recipe to do so is Majorization-Minimization when minimizing loss/cost, or
equivalently Minorization-Maximization if maximizing profit/utility/reward
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Majorization-Minimization (MM)
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• We want to maximize the Pt as much as possible. We will do so through a surrogate
upperbound Ut with the following properties
◦ Ut(wt) = f (wt) (surrogate is tight at the current solution)
◦ Ut(w) ≥ f (w) (surrogate is an upperbound on the loss function)
◦ Ut(·) is simple to minimize

• Thus, our MM scheme is as follows
◦ wt+1 = argminw Ut(w)

◦ Update the surrogate to go from Ut to the new surrogate Ut+1 satisfying the above properties

• Examples include K-means clustering and Expectation-Maximization (EM) for solving mixture
models.

• We will show GD is also an example of MM for smooth functions
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Why those properties?
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• The properties of the surrogate function guarantee progress

Pt = f (wt)− f (wt+1) ≥ f (wt)− Ut(wt+1) upper bound property

≥ f (wt)− Ut(wt) wt is the minimizer of Ut

≥ f (wt)− f (wt) = 0 tightness property

(75)

• This, in addition to assuming the loss is bounded from below guarantees the method will
converge/stop at a stationary point.
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• Recall by smoothness we have a convex quadratic upperbound on the loss!
• This could be our surrogate:

Ut(w) := f (wt) + ⟨w − wt ,∇f (wt)⟩+
L

2
∥w − wt∥2 (76)

• It is tight at wt

• It is always an upper bound on f by smoothness
• It is strongly convex (easy to optimize). Just take the gradient and set it equal to zero:

∇Ut(w) = 0

0 +∇f (wt) + L(w − wt) = 0

w = wt −
1
L
∇f (wt)

(77)

• This is exactly GD with learning rate η = 1/L
• More generally, GD with η ≤ 1/L is an instance of MM
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Better/Generalized Optimizers
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• A procedure to handle constraints (e.g. Projected GD: wt+1 = PX (wt − η∇f (wt)))

wt+1 = arg min
w∈X

f (wt) + ⟨w − wt ,∇f (wt)⟩+
1
2η
∥w − wt∥2 (78)

• Extension to broad distance/divergence notions (e.g. Mirror Descent)

wt+1 = arg min
w∈X

f (wt) + ⟨w − wt ,∇f (wt)⟩+
1
2η
D(w ,wt) (79)

Useful when w is a probability vector, e.g. reinforcement learning.
• Extension to arbitrary update vectors gt

wt+1 = arg min
w∈X

f (wt) + ⟨w − wt , gt⟩+
1
2η
D(w ,wt) (80)

Results in Stochastic (Projected) Gradient Descent, Stochastic Mirror Descent, etc.
• Possible to find better surrogates if f has more structures (e.g., leveraging Hessian’s properties).
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(S)GD and Smooth functions
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Let ∆ := f (w1)− f (w∗) denote the initial suboptimality.

Theorem (GD)

Assume f is L-smooth. then, GD with η = 1
L satisfies

1
T

T∑
t=1

∥∇f (wt)∥2 ≤
2L∆
T

= O(1/T ). (81)

Theorem (SGD)
Assume f is L-smooth. Furthermore assume we have access to an SFO and that z1, . . . , zT
are statistically independent. Then, SGD with learning rate η = min{ 1

L ,
√

2∆
Lσ2T } satisfies

Ez1,...,zT [
1
T

T∑
t=1

∥∇f (wt)∥2] ≤
2L∆
T

+2σ

√
2∆L

T
= O(1/

√
T ). (82)
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Proof of GD’s Theorem
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• Study the amount of progress while leveraging smoothness

f (wt+1) ≤ f (wt) + ⟨wt+1 − wt ,∇f (wt)⟩+
L

2
∥wt+1 − wt∥2 (83)

• Using GD’s update wt+1 = wt − η∇f (wt)

f (wt+1) ≤ f (wt)− η⟨∇f (wt),∇f (wt)⟩+
Lη2

2
∥∇f (wt)∥2

= f (wt)− ∥∇f (wt)∥2η(1−
Lη

2
)

⇒ Pt = f (wt)− f (wt+1) = ∥∇f (wt)∥2η(1−
Lη

2
)

(84)

• Side note 1: the larger the gradient, the more progress we make: Pt = O(∥∇f (wt)∥2)
• Side note 2: for any η < 2/L we make progress.
• Side note 3: Maximum progress when η = 1/L (progress a concave quadratic function of η).
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Proof of GD’s Theorem (Cont’d)
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• Rearrrange and average over t (requires η < 2/L)

1
T

T∑
t=1

∥∇f (wt)∥2 ≤
∑T

t=1 f (wt)− f (wt+1)

Tη(1− Lη
2 )

(85)

• Telescoping structure and noting f (w1)− f (wT+1) ≤ f (w1)− f (w∗) = ∆

1
T

T∑
t=1

∥∇f (wt)∥2 ≤
∆

Tη(1− Lη
2 )

(86)

• Optimizing the bound w.r.t. η gives η = 1/L and the stated result.
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Proof of SGD’s Theorem
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• Following a similar approach we use smoothness and SGD’s update to study progress

f (wt+1) ≤ f (wt) + ⟨wt+1 − wt ,∇f (wt)⟩+
L

2
∥wt+1 − wt∥2

= f (wt)− η⟨gt ,∇f (wt)⟩+
Lη2

2
∥gt∥2

(87)

but here wt ’s and gt ’s are random quantities. We need proper expectations (hence the SFO
and independent assumptions)

• First, conditioned on wt (equivalently z1, . . . , zt−1)

Ezt [⟨gt ,∇f (wt)⟩|wt ] = ⟨Ezt [gt |wt ],∇f (wt)⟩ = ∥∇f (wt)∥2 (88)

• Second, conditioned on wt (equivalently z1, . . . , zt−1)

Ezt [∥gt∥2|wt ] = Ezt [∥gt ±∇f (wt)∥2|wt ]

= Ezt [∥gt −∇f (wt)∥2|wt ] + ∥∇f (wt)∥2 ≤ ∥∇f (wt)∥2 + σ2
(89)
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Proof of SGD’s Theorem
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• Thus, conditioned on wt (equivalently z1, . . . , zt−1)

Ezt [f (wt+1)|wt ] ≤ f (wt)− ∥∇f (wt)∥2η(1−
Lη

2
) +

Lη2σ2

2
(90)

Side note: No guarantee on the (expected) progress anymore!
• Averaging over t, rearranging (requires η < 2/L), and taking expectation w.r.t. z1, . . . , zT

1
T

T∑
t=1

Ez1:T ∥∇f (wt)∥2 ≤
∑T

t=1 f (wt)− f (wt+1)

Tη(1− Lη
2 )

+
Lησ2

2(1− Lη
2 )

(91)

• Telescoping structure and noting f (w1)− f (wT+1) ≤ f (w1)− f (w∗) = ∆

1
T

T∑
t=1

Ez1:T ∥∇f (wt)∥2 ≤
∆

Tη(1− Lη
2 )

+
Lησ2

2(1− Lη
2 )

(92)

• Optimizing the bound w.r.t. η gives the stated result (doable but a bit cumbersome).
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Stochastic Gradient Descent
(SGD): Some Examples
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• Linear Regression
◦ Features: xi ∈ Rd , i = 1, . . . ,N
◦ Labels: yi ∈ R, i = 1, . . . ,N
◦ Linear dependency: y = x⊤w + e where e ∼ N (0, σ2)

◦ Square loss: ℓ(w , z) = 1
2 (y − x⊤w)2
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Linear Regression (Cont’d)
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• N = 100, d = 10, 200
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Non-Linear Regression
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• ℓ(w , z) = 1
2 (y − σ(x⊤w))2

• A simple neural network
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Performance-Robustness Tradeoff
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• Focusing on harder instances accelerates training by finding the boundary sooner
• Typically measured by loss values ℓ(wt , z

i
t) or gradient values ∥∇ℓ(wt , z

i
t)∥

• Performance-Robustness Tradeoff: More chance that samples near the boundary have noisy
labels, thus focus on easy samples for robust training

• Many such tradeoffs between performance and other contexts in ML/DL optimization

OPT4DL, A. Hashemi, Purdue ECE



High Confidence Guarantees



Average vs High Confidence
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• Recall we showed for SGD
E[error] ≤ Bound(T ) (93)

This means if running SGD many many times, on average it perform well

• Not satisfactory, we want good performance after only one-time training. That is, given
0 < δ < 1 we want with probability exceeding 1− δ

error ≤ Bound(T , δ) (94)

or equivalently
Pr{error ≥ Bound(T )} ≤ δ (95)

• Can SGD deliver such results?
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Stronger Results under Stronger Assumptions
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• Recall our SFO assumption (written slightly differently here)

gt = ∇f (wt) + et , E[et |wt ] = 0, E[∥et∥2|wt ] ≤ σ (96)

• We can assume the noise is light-tailed (or sub-Gaussian)

E[exp(∥et∥2/σ2)|wt ] ≤ 1 (97)

Example: Gaussian noise, uniformly bounded noise, etc.

• Combined with concentration of measure results (deviation from the mean), e.g.,
Azuma–Hoeffding, we can show our previous bounds hold with high confidence:

error ≤ Bound(T , log
1
δ
) (98)
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Martingale Difference Sequence (MDS)
A sequence of random variables X1, . . . ,XT is an MDS if E[Xt |z1, . . . zt−1] = 0 where
z1, . . . , zT is another sequence of random variables

• Think of it as a generalization of zero-mean independent random variables.

• In the context of DL optimization, very often

Xt = gt −∇f (wt), Ezt [gt −∇f (wt)|z1, . . . zt−1] = 0 (99)

the term we dealt with in the proofs for SGD before.

• When assuming bounded gradient or light-tailed noise, we can show O(
√

T log 1
δ ) growth of

noisy terms
T∑
t=1

⟨gt −∇f (wt),∇f (wt)⟩,
T∑
t=1

η∥gt −∇f (wt)∥2 (100)
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Stronger Results under Stronger Assumptions (Cont’d)
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• Could be violated in practice. A remedy is clipping or normalization:

gt = ∇f (wt)+et , wt+1 = wt−ηmin{max{−C , gt},C} or wt+1 = wt−η
gt

∥gt∥+ κ
(101)

for some clipping parameter C > 0 and a small constant κ > 0 for numerical stability

• These will control the noise and could deliver high confidence guarantees

• Connection to advanced training methods (adaptivity) and other contexts (privacy).

• Appear in diverse learning settings, e.g., the PPO method in reinforcement Learning (RL)

• Without such safeguarding mechanisms, the growth of the accumulation of noisy terms could
be larger w.r.t. to δ.
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Boosting (ensemble of) SGD
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Markov Inequality
For any positive random variable X and constant λ > 0 we have

Pr{X > λ} ≤ E[X ]

λ
(102)

• Let X = error and λ = Bound(T )/δ

• By Markov

Pr{error > Bound(T )/δ} ≤ δ
E[error]

Bound(T )
≤ δ (103)

or equivalently, with probability at least 1− δ,

error ≤ Bound(T )/δ (104)

• Terrible dependence on confidence δ (i.e., 1/δ vs our desired log 1/δ)
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Boosting (ensemble of) SGD
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• We will boost SGD by running multiple SGDs in parallel and performing post-optimization
◦ number of parallel runs S , number of samples for post-optimization N

◦ Run S versions of SGDs in parallel and call their outputs ŵs , for s = 1, . . . , S
◦ Choose the best output ŵ :

ŵ = arg min
w∈{ŵ1,...,ŵS}

∥G(w)∥, G(w) =
1
N

N∑
j=1

∇ℓ(w , zpoj ) (105)

or use function values instead

• Total Complexity: Recall for SGD total oracle/gradient complexity is O(BT ) and O(T ) when
B is some constant. For SGD-PO:

Oracle complexity = S × T + S × N = (N + T )× S (106)
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Convergence Analysis
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Theorem
If

N = Ω(
σ2 log 1

δ

ϵδ
), T = Ω(

1
ϵ2
), S = Ω(log

1
δ
) (107)

SGD with Post-Optimization can find a solution ŵ such that with probability at least 1− δ it
holds ∥∇f (ŵ)∥2 ≤ ϵ.

• Thus, the total complexity in terms of ϵ and δ is

log2 1
δ

ϵδ
+

log 1
δ

ϵ2
(108)

• Proof relies on showing the ensembling/post-optimization enables boosting the simple Markov
concentration result, hence improving the dependence on δ.
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Stochastic Gradient Descent
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Scenarios with no gradient
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• Recall, we typically aim to solve

min
w

1
n

n∑
i=1

ℓ(w , zi ) (109)

• A natural stochastic gradient is to sample a mini batch of samples z1
t , . . . , z

B
t and compute

gt =
1
B

B∑
j=1

∇ℓ(wt , z
j
t ) (110)

• However, we may not be able to, or want to, do this in many scenarios
◦ (Online) Reinforcement Learning
◦ Adversarial attacks
◦ Fine-tuning of Large Language Models (LLMs)
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Example: (Online) Reinforcement Learning
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• Agent only gets to see the scalar reward, i.e., the reward for the played action.

• In certain RL models, the task can be reduced to an online optimization problem with linear
utility functions ft(w) = ⟨w , rt⟩ where w is our policy and rt is the reward vector

• The gradient is rt but the agent only gets to see Rt = rt(is) where action ais is the played action
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Example: Adversarial Attacks
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• Goal: Given a classifier and a small dataset, make the DL classily images incorrectly

• We only know the images and the returned predictions. Let yi be the label of image xi

min
δ

scorew∗(yi |ci + δ) + λ∥δ∥ (111)

for some perturbation parameter δ.

• We do not know the weights of the DL model w∗, hence we cannot use gradient-based
methods like SGD that need the gradient ∇scorew∗(yi |ci + δ).
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LLM fine-tuning
Machine
Intelligence
Networked
Data
Science

&

• As LLMs grow in size, the substantial memory overhead from gradient computation presents a
significant challenge.

• Crucial to address, especially for applications like on-device training where memory efficiency is
paramount.
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SGD without the G: Intuition
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• Let us recall the definition of derivatives for scalar functions

f ′(w) = lim
µ→0

f (w + µ)− f (w)

µ

= lim
µ→0

f (w)− f (w − µ)

µ

= lim
µ→0

f (w + µ)− f (w − µ)

2µ

(112)

• Let µ > 0 and fixed, then we expect

gµ(w) =
f (w + µ)− f (w − µ)

2µ
≈ f ′(w) (113)

• We only need two function evaluations and no gradient calculation

• We expect to incur some bias depending on µ which vanishes as µ→ 0
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SGD without the G: Intuition (Cont’d)
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• We can view gµ as an expectation over random directions in R (i.e., left and right)
◦ Let u ∼ U{−1, 1}, i.e., a vector in R lying on the surface of unit sphere.
◦ Consider

gµu(w) =
f (w + µu)− f (w)

µ
u (114)

to be a random variable

• Then,

Eu[g
µu(w)] =

1
2
f (w + µ)− f (w)

µ
− 1

2
f (w − µu)− f (w)

µ
u

=
f (w + µ)− f (w − µ)

2µ
= gµ(w) ≈ f ′(w)

(115)

when µ is small.

• Thus, gµu(w) is an unbiased estimator of gµ(w), an approximation of the derivative of our loss
function

• How to go to Rd?
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Zero-Order Gradient Estimator
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• Recall: u ∼ U{−1, 1}, i.e., a vector in R lying on the surface of unit sphere.

• In general, we just sample u from the surface of unit sphere in Rd

• Our estimator then becomes

gµu(w) =
f (w + µu)− f (w)

µ
u, u ∼ Sd (116)

• Called zero-order estimator as it uses zeroth order information, i.e., function values only as
opposed to first order (Gradient) or second order (Hessian) information.

• We can also sample u from a Gaussian distribution N (0, Id) (e.g., for simpler mathematical
analysis) given that

u ∼ N (0, Id)⇔
u

∥u∥
∼ Sd (117)
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ZO-SGD Method
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• Consider minw f (w) := Ez [ℓ(w , z)]

• Initialize w1,learning rate η, smoothing rate µ

• For t = 1, . . . ,T do
◦ sample a random direction ut ∼ N (0, Id) or u ∼ Sd

◦ sample a mini batch z1
t , . . . , z

B
t

◦ form the update vector

gµu
t =

1
B

∑B
j=1 ℓ(wt + µut , z

j
t )− ℓ(wt , z

j
t )

µ
ut (118)

◦ update the parameter wt+1 = wt − ηgµu
t

• To lower the variance, we can sample multiple (a mini batch of) random directions as well

gµu
t =

1
K

K∑
k=1

1
B

∑B
j=1 ℓ(wt + µukt , z

j
t )− ℓ(wt , z

j
t )

µ
ukt , ukt ∼ N (0, Id) (119)
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ZO Estimation as Smoothing
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• Recall gµu(w) = f (w+µu)−f (w)
µ u and that

Eu[g
µu(w)] =

f (w + µ)− f (w − µ)

2µ
= gµ(w) (120)

• So is gµ(w) the true gradient for any function?

• In turns out
gµ(w) = ∇f µ(w), f µ := Eu[f (w + µu)] (121)

and f µ is called the smoothed version of f such that when u ∼ N (0, Id) the technique is called
Gaussian Smoothing

• Called smoothed since its sensitivity properties are nicer than the original function f

◦ f µ has both lower Lipschitzness and Smoothness parameters
◦ f µ is smooth even if f is not! L(f µ) ∝ 1/µ

• µ controls the smoothness-approximation tradeoff
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ZO Estimation as Smoothing (Cont’d)
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• Recall
gµ(w) = ∇f µ(w), f µ := Eu[f (w + µu)] (122)

• Intuition: Expectation is an integral and integral tends to make the functions smoother/nicer
• Indeed, f µ is nothing but the convolution of f and the PDF of u. Recall:
f ∗ g =

∫
f (τ)g(w − τ) · dτ

• This idea is also useful when analyzing DL models with non-smooth activations, e.g., ReLU.
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ZO-SGD for f as SGD for f µ
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• Recall gµ(w) = ∇f µ(w) and we used an unbiased estimator of gµ(w) to minimize f without
gradient calculation (ZO-SGD)

• Thus, ZO-SGD is effectively SGD for the following problem

min
w

f µ(w) := Eu[f (w + µu)] = Ez,u[ℓ(w + µ, z)] (123)

• As µ tends to zero the two problem become equivalent
• This idea can be used to prove

Theorem

If µ ∝ 1
d
√
T

and η ∝ 1√
dT

the iterates of ZO-SGD satisfy

1
T

T∑
t=1

Ez1:T ,u1:T ∥∇f (wt)∥2 = O
( d
T

+

√
d

T

)
. (124)
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Deep Learning Architectures 1:
MLPs



From Linear Regression as DL
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• Recall our simple linear regression model

yi = x⊤i w∗ + b∗ + ei (125)

• labels yi ∈ R, features xi ∈ Rd , noise ei ∈ R
• regression weights w∗ ∈ Rd , bias b∗ ∈ R
• Previously we ignored the bias term. That is w.l.o.g. as we can increase the dimension to d + 1

by defining w∗ ← (w∗, b∗) and xi ← (xi , 1)
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From Linear Regression as DL (Cont’d)
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• We can think of this model as a combination of artificial neurons: elements taking an input
signal, processing it, and pass it forward

• That is, a simple Artificial neural network (ANN) or a shallow DL model

• The training involves fitting the parameters of the neurons, i.e., the regression parameters, to
the data
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Linear Regression and MLE
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• Can also be thought as maximum likelihood estimation when the noise is Gaussian and
observations are statistically independent

max
w ,b

p(y |x ;w , b) :=
n∏

i=1

p(yi |xi ;w , b) ∝
n∏

i=1

exp(− (yi − x⊤i w − b)2

2σ2 ) (126)

• As the log is a monotone function, the above is equivalent to the following negative log
likelihood minimization problem

min
w ,b

1
n

n∑
i=1

(yi − x⊤i w − b)2 ⇔ ERM (127)

• Most advance learning tasks follow a similar template: maximize the likelihood while assuming
suitable distributional assumptions.

• Some times we also include a prior (aka a regularization term) and the problem becomes
Maximum a priori estimation (MAP)
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Classification as DL
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• Now, assume a classification problem where instead yi ∈ {1, . . . ,C}
• We can represent the labels via one-hot encoding:

yi ∈ {e1, . . . , eC}, ei ∈ RC , ei = (0, 0, . . . , 1, 0, 0) (128)

That is, ei ’s are the standard unit basis vectors in RC .

• Again a simple linear relation between features and labels: yi = W ∗xi + b∗ where yi ∈ RC and
xi ∈ Rd are labels and features while W ∗ ∈ RC×d and b∗ ∈ RC are weights and bias
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Classification and MLE
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• We can use square loss as before, but the solution is not elegant

• Let Ŵ and b̂ denote the parameters of a learned model.

• Consider the predicted label ŷi = Ŵ xi + b̂

• Desirable to think of the c ’s entry of ŷi as the probability that the label of x is c .

• Thus, we want ŷi (like the true labels yi after one-hot encoding) to be nonnegative and sum to
one, i.e., be probability vectors in RC

• We perform Softmax normalization

ô = Ŵ x + b̂, ŷ = softmax(ô), ŷ(j) :=
exp(κô(j))∑C
c=1 exp(κô(c))

(129)

• Motivated by the Boltzmann distribution in Physics to model a distribution over energy states
in gas molecules (in our case the states are the finite classes).
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Classification and MLE (Cont’d)
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• The training involves fitting the parameters of the neurons, i.e., the classification parameters,
to the data. But which loss?

• Let us resort to MLE: find the parameters to maximize the likelihood of data
• Given our softmax normalization, the natural observation/noise distribution is multinomial

(discrete Boltzmann) distribution

ŷ(j) = p(j |x) = exp(ô(j))∑C
c=1 exp(ô(c))

probability of class/state j given feature x

− log p(j |x) = − log ŷ(j) = −
C∑

c=1

y(j) log ŷ(j) only one coordinate of y(j) is nonzero

= Cross-Entropy(y , ŷ)
(130)

• A notion of distance between two distributions and related to the Kullback–Leibler (KL)
divergence
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Entropy, KL, and Cross-Entropy
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• Entropy: how random a quantity is (more random, more bits needed to represent it)

H(p) = −
C∑

c=1

p(c) log p(c) ≥ 0 (131)

• KL divergence (or relative entropy): how different two distributions are

Dkl(p∥q) =
C∑

c=1

p(c) log
p(c)

q(c)
≥ 0 (132)

An example of f -divergence with convex functions f : Df (p∥q) = Eq[f (
p
q )]. For KL,

f (t) = t log t.

• Easy to show Cross-Entropy(y , ŷ) = H(y) + Dkl(y∥ŷ) ≥ 0.

• Thus, minimizing CE loss is equivalent to minimizing KL divergence.
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CE vs Square loss
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• As discussed CE is more natural than square loss as it enables us to think of lables as
probabilities. A direct link to MLE

• CE provides larger feedback sooner
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Gradients and Learning Signals
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• Consider linear regression, i.e., ŷ = w⊤x . For training we use SGD to minimize ERM with
square loss. By chain rule, Gradient is proportional to the gradient w.r.t. the output ŷ :

ℓ(w , z) =
1
2
(y − ŷ)2, ∇w ℓ(w , z) = −x(y − w⊤x) ∝ ∇ŷ ℓ(w , z) = ŷ − y (133)

• Consider softmax classification, i.e., ŷ(j) := exp(ô(j))∑C
c=1 exp(ô(c))

where ô = Wx . For training we use
SGD to minimize ERM with CE loss. By chain rule, Gradient is proportional to the gradient
w.r.t. the output ŷ

ℓ(w , z) = CE (y , ŷ) = −
C∑

c=1

y(c) log ŷ(c), ∇ŷ ℓ(w , z) = softmax(ô)− y = ŷ − y (134)

• In both cases, the larger the error/residual, the larger the gradient/signal
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Perceptron
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• Let us explore why we need hidden layers.

• Binary classification with hinge loss

y = sign(⟨x ,w⟩), ℓ(w , z) = max(0, 1− y⟨x ,w⟩) (135)

• Consider SGD for this problem.

• For t = 1, . . . ,T
◦ sample zt = (xt , yt) ∼ pz

◦ If yt⟨xt ,wt⟩ < 0 perform wt+1 = wt + ηytxt

◦ If yt⟨xt ,wt⟩ ≥ 0 perform wt+1 = wt

• This is called Perceptron and given a margin ρ > 0 between classes has O(ρ−2) guaranteed on
the number of mistakes

• What if data non-linearly separable?
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Perceptron (Cont’d)
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• Assume we have two features x = (x1, x2) and y = xor(x1, x2)

• data non-linearly separable and Perceptron fails

• Idea: combine multiple Perceptrons

o3 := xor(x1, x2) = x1 · x̄2 + x2 · x̄1 = (x1 + x2) · (x̄1 + x̄2) := o1 · o2 (136)
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Perceptron (Cont’d)
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• o1 = x1 + x2

x1 1 0 1 0
x2 1 0 0 1
o1 1 0 1 1

• o2 = x̄1 + x̄2

x̄1 1 0 1 0
x̄2 1 0 0 1
o2 0 1 1 1

• o3 = o1 · o2

o1 1 0 1 0
o2 1 0 0 1
o3 1 0 0 0
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Multi-Layer Perceptron (MLP)
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• Each rule can be learned by a single Perceptron. To be thought as a neuron with sign as the
activation

output = sign(input× weight) (137)

• Thus, to learn the final label rule we are building a Multi-Layer Perceptron (MLP)

• MLP enjoys a higher learnability capacity (characterized by VC dimension) than a single
Perceptron, thus able to handle complex data

• VC dim: Size of the largest dataset of points in general positions s.t. our model can classify it
regardless of label assignment

• VCdim of Perceptron is roughly d but for MLP it is roughly Ld when having L hidden layers.
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Activations
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• Sigmoid: σ(x) = 1
1+exp(−x)

• Tanh: σ(x) = 1−exp(−2x)
1+exp(−2x)

• ReLU: σ(x) = max(0, x)
• ReLU leads to more efficiency in computation and stability in training
• Activations are applied coordinate-wise
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Why Nonlinear Activations?
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• Two hidden layers in an MLP with linear activations

h1 = W1x + b1, h2 = W2h1 + b2 (138)

• These hidden layers will collapse into one

h̃ = W̃ x + b̃, W̃ = W2W1, b̃ = W2b1 + b2 (139)

• Thus, intuitively, we have lost the increase in the learning capacity we gained by having hidden
layers
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Deep Learning Architectures 2:
CNNs



Harnessing Structures
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• MLPs do not exploit the relation between the features (aka the prior knowledge)

• As a result, they grow very rapidly in size by the input dimension. For instance, 108 parameters
for an MLP with 100 neurons processing 1 mega pixel image.

• Images, and other type of data, typically have two important structures
◦ Translation Invariance: Moving an object does not change the object
◦ Locality: Nearby pixels are related

• Turns out using convolution/cross-correlation could help leveraging these structures and reduce
the number of parameters drastically.
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CNNs
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• Consider the pre-activation result of the i-th neuron

vi =
∑
j

Wijxj + bi =
∑
k

Wi(i+k)xi+k + bi =
∑
k

ωk
i xi+k + bi (140)

• Translation invariance implies that a shift in the input should simply lead to a shift in the
output

• This is only possible if ω and b are independent of specific location i :

vi =
∑
k

ωkxi+k + b (141)

effectively a convolution/cross-correlation
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CNN: Example 1
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• Let x ∈ R5 and v ∈ R3 such that v = Wx + b has 3 + 3× 5 = 18 learnable parameters in a
regular MLP.

• With CNN, the number of parameters will reduce to 3 + 1 = 4

v1

v2

v3

 =

• • • 0 0
0 • • • 0
0 0 • • •



x0

x1

x2

x3

x4

+

••
•

 i.e. vi = b +
1∑

k=−1

ωkxi+k , i = 1, 2, 3 (142)

each color denoting a learnable parameters
• Thus, we are doing weight sharing and zero-ing out some other weights
• Convolution filter/kernel: •••, output called a feature map
• Note that in CNNs, the size of input, output, and ω are constrained:

dout = din − dω + 1 (143)
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CNN: Example 2
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CNN Operations
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• Locality: information relevant to the i-th output is localized. Thus, limit the range of sum in
the convolution

vi = b +

O(d)∑
k=−O(d)

ωkxi+k ⇒ vi = b +
∆∑

k=−∆

ωkxi+k (144)

where ∆ = O(1), e.g., ∆ = 3, 5, 7, 9 (typically odd). Thus, dω = 2∆+ 1
• Padding: Gaining control on output size and ensuring the preservation of edge information

• Output size is din − dω + 1 + dpadding
• dpadding = dω − 1 ensures output has the same size as input.
• odd ∆ to ensure even padding on each side
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CNN Operations (Cont’d)
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• Stride: More aggressive size reduction by shifting the kernel more than one location (say ds
location)

• Output size is din−dω+dpadding+ds
ds

• Max and average pooling: Further parameter-free downsampling

OPT4DL, A. Hashemi, Purdue ECE



LeNet and AlexNet
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VGG and ResNets (Networks with Blocks)
Machine
Intelligence
Networked
Data
Science

&

OPT4DL, A. Hashemi, Purdue ECE



Residual/Skip Connection
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• We typically initialize NNs randomly
• In the early training as depth gets larger almost no useful signal goes from the input to the

output and vice versa
• Residual connection helps carrying the information over while enjoying the high capacity of

deep NNs
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Residual Block
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• Resnets constructed as a modular connection of Residual blocks

• Name: Each block learns to model the residual g(x) (difference of input and output). As the
ideal residual is small, learning the residual might be easier than learning the true unknown
feature-label relation f (x)

• Used in other architectures, e.g., transformers
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Residual as Nested Function Classes
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• The modularity leads to nested capacity as depth increases

• Thus, deeper models are highly expected to outperform shallower ones
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Connection to ODEs
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• Consider an ODE: dx(t)
dt = f (t, x)

• if f known, Euler’s method can be used to model the evolution of x and solve the ODE:
xt+1 = xt + f (t, xt)

• This is very similar to residual learning: xt+1 − xt = f (t, xt)

• ResNets useful in solving and modeling ODEs and other physical governing equations, an area
referred to as Physics-informed DL
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Deep Learning Architectures 3:
RNNs



Learning with Sequence Data
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• Recall, we discussed the connection between ERM and MLE

min
w

f (w) :=
1
n

n∑
i=1

ℓ(w , (xi , yi )) ⇔ max
w

n∏
i=1

p(yi |xi ;w) (145)

in the context of classification and regression

• Many applications we work with sequences x1, x2, . . . where xi ∈ Rp are observations at time t

(e.g., working with financial data, language modeling, DNA data, etc.)

• Natural to assume a causal model where each observation depends on the previous ones
xt = A(x1, . . . , xt−1;w

∗). An approach referred to as auto-regressive (AR) models

• Natural to follow a similar likelihood maximization approach to find w∗. For instance,

xt+1 = w(1)x1 + w(2)x2, . . . ,+w(t)xt (146)

• Issue: too many features, i.e. O(t) when t grows
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Latent Modeling
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• A solution is to limit the dependency of xt to only xt−τ , . . . , xt−1. More generally, we aim to
find a latent variable that effectively summarizes the dependencies of the observations

xt = A(ht−1;w
∗), ht = g(ht−1, xt ;ω

∗) (147)

• We can represent these functions by NNs and learn their parameters by fitting the data
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Simple RNN
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• For instance, let us resort to MLPs hi = σ(Wihi−1 + bi ), i = 1, . . . , L, h0 = x

• For latent AR modeling

ht = g(ht−1, xt ;ω
∗) ⇔ ht = σ(Wht−1 + b + W̃ xt) (148)

called an RNN with one hidden layer where ω∗ = (W , W̃ , b). Notably, the parametrization cost
of an RNN does not grow as the number of time steps increases.
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RNN++
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• Certain improvements to RNN, e.g. LSTM, GRU, to deal with the information/signal loss when
working with long sequences and long-term dependencies. Solutions similar in nature to
skip/residual connections

• We can also stack RNNs and form multiple hidden layers

• We can process the sequences from both directions to learn the dependencies more effectively,
e.g. bidirectional LSTM
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From RNNs to Transformers
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• RNNs like CNNs and MLP need to work with data of a predefined size

• For RNNs, the sequence length should then be fixed. Thus, could limit their applicability

• RNNs further suffer from the need for sequential computation, not able to leverage advances
parallel computing

• Transformers leverage the attention mechanism and positional encoding to alleviate these
issues (at the cost of higher parallel computational cost)
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Attention Mechanism
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• Idea based on databases, i.e. collections of keys k and values v

• We can make a query q regardless of the database size
• Instead of returning one of the values in the database, attention typically returns

Attention(q,D) =
m∑
i=1

α(q, ki )vi , α(q, ki ) =
exp(⟨q, ki ⟩/

√
d)∑m

j=1 exp(⟨q, kj⟩/
√
d)

(149)

i.e., using softmax to ensure weights are nonnegative and sum to one (convex combination).
• In practice, q, v , k are matrices and include learnable weight matrices.
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Motivation
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• Calculating derivatives is the crucial step in all the training algorithms

• Modern deep learning frameworks automate this process by offering automatic differentiation

• Two crucial ideas are back-propagation method and computational graphs

• Computational graph tracks how each value depends on others and automatic differentiation
works backwards through this graph applying the chain rule (back-propagation)
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Back-propagation for MLP
Machine
Intelligence
Networked
Data
Science

&

• Consider our canonical training task

min
w

f (w) =
1
n

n∑
i=1

ℓ(w , zi ) (150)

for a simple MLP and a regression task

ℓ(w , zi ) =
1
2
∥yi −WLσ(WL−1 . . .W2σ(W1xi ))∥2, xi ∈ Rp, yi ∈ Rm (151)

• Thus, our learnable parameters are w = (W1, . . . ,WL) ∈ Rd

• And SGD update is wt+1 = wt − ηgt with gt representing the gradient of the mini batch used
in iteration t

• Our goal is to find partial derivatives w.r.t. each weight matrix using chain rule (treating each
Wl as a dl × dl−1 column vector such that ∂WL

ℓ is also a dl × dl−1 column vector).
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Back-propagation: defining Variables
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• Define pre-activation vectors v and post-activation vectors h

vl = Wlhl−1, hl = σ(vl), vl , hl−1 ∈ Rdl , l = 1, . . . , L (152)

where h0 = x ∈ Rd and dl denotes the number of neurons in layer l . Note vL denotes model’s
prediction (output layer).

• Define the final error signal

eL = ∂vLℓ = ∂vL
1
2
∥y − vL∥2 = vL − y , eL ∈ RdL (153)

• Define activation derivative matrix

Dl = diag(σ′(vl(1)), . . . σ′(vl(dl))) ∈ Rdl×dl (154)
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Partial Derivatives
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• We can represent each partial derivative using our defined variables. For instance,

∂WL
ℓ = ∂WL

vL × ∂vLℓ = IdL−1 ⊗ hL−1︸ ︷︷ ︸
(dL·dL−1)×dL matrix (Kronecker product)

× vL − y︸ ︷︷ ︸
=eL, dL×1 vector

(155)

• Example:

a =

[
1
2

]
∈ R2, W =

W11 W12

W21 W22

W31 W32

 ∈ R3×2.

I3 ⊗ a =



1 0 0
2 0 0
0 1 0
0 2 0
0 0 1
0 0 2


∈ R6×3.
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Partial Derivatives (Cont’d)
Machine
Intelligence
Networked
Data
Science

&

• Recall vl = Wlhl−1, hl = σ(vl), vl , hl−1 ∈ Rdl , l = 1, . . . , L

• For layer L− 1

∂WL−1ℓ = ∂WL−1vL−1︸ ︷︷ ︸
hL−2

× ∂vL−1hL−1︸ ︷︷ ︸
derivative of activation DL−1

× ∂hL−1vL︸ ︷︷ ︸
WL

× ∂vLℓ︸︷︷︸
eL

(156)

where we may need operations like I⊗ and ⊤ to ensure dimensions match and the final answer
is a dL−1 · dL−2 vector

• Consider defining

eL−1 := ∂vL−1ℓ = ∂vL−1hL−1︸ ︷︷ ︸
derivative of activation DL−1

× ∂hL−1vL︸ ︷︷ ︸
WL

× ∂vLℓ︸︷︷︸
eL

(157)

by chain rule
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Partial Derivatives (Cont’d)
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• Thus
∂WL−1ℓ = ∂WL−1vL−1︸ ︷︷ ︸

hL−2

×eL−1 (158)

that is the partial derivative for each layer l is just the product of the activation/output of the
previous layer hl−1 and the error of that layer el

• Gives us a natural procedure to leverage memory to reduce computational cost

• This procedure is called Back-propagation:
◦ compute pre/post activations vl , hl in the forward pass and store them
◦ compute and propagate the error signals in the backward pass

el−1 = Dl−1 ×Wl × el , l = 1, . . . , L (159)
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Computation Graph
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• A computation graph is a directed acyclic graph (DAG) that represents the sequence of
operations applied to variables in a computational framework, such as deep learning.

• Computational graph tracks how each value depends on others and automatic differentiation
works backwards through this graph applying the chain rule (back-propagation)

• Example f (x) = (2x + 1) · (2x + 1)

• We think of this as h(x , g) = g(2x + 1) where g(x) = 2x + 1

• We aim to calculate the derivative of f at x = 1
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Computation Graph Example
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• Forward pass
◦ find the values of input variables (pre/post activations hl , vl)
◦ label the edges with relevant partial derivatives (activation derivatives Dl)
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Computation Graph Example (Cont’d)
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• Backward pass
◦ move backward to calculate the derivatives w.r.t. activations (error signals el ’s)
◦ accumulate the derivatives and sum over all path
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Static Computation Graph
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• The entire computation is defined and compiled before execution (a define-then-run approach),
e.g. earlier versions of Tensorflow

• Advantages
◦ More optimizable, as the entire computation graph is known in advance.
◦ Allows for efficient graph-level optimizations, such as operation fusion
◦ Can be deployed more easily for inference after compilation.

• Disadvantages
◦ Less flexible: modifying the graph requires redefining and recompiling it
◦ Debugging is harder since the execution is decoupled from definition.
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Dynamic Computation Graph
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• Built on-the-fly during execution. The structure of the graph can change at each iteration (a
define-by-run approach), e.g. Tensorflow 2.0 and Pytorch

• Advantages
◦ Highly flexible: enables dynamic control flows, such as loops and conditionals.
◦ Easier to debug because the execution happens immediately.
◦ More intuitive for model development, especially for recurrent networks and reinforcement

learning.

• Disadvantages
◦ Potentially less optimized since the entire graph is not known beforehand.
◦ Can be slower compared to static graphs due to runtime overhead.
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Why Initialization Matters
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• DL architectures are complex and leading to highly complex and nonconvex loss landscapes
• Initialization tends to determine the quality of of the solution found by iterative methods
• Initialization tends to impact the gradient information used by SGD throughout training
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Initialization and Gradient
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• Consider an MLP

hj = σ(Wjhj−1 + bj) ∈ Rdj , , j = 1, . . . , L, , h0 = x ∈ Rd , , hL = y ∈ R (160)

where bj ∈ Rdj and Wj ∈ Rdj×dj−1 are learnable parameters of layer j .

• Gradient is our learning signal and used in SGD for training.

• By Chain rule and treating each Wj as a d j−1
j := dj × dj−1 vector,

∂Wj loss = ∂WjhL × ∂hL loss = ∂Wjhj · ∂hjhj+1 . . . ∂hL−2hL · ∂hL−1hL × ∂hL loss

= ∂Wjhj ×Mj+1 × . . .ML−1 ×ML = ∂Wjhj ×
L∏

k=j+1

Mk × ∂hL loss
(161)

Side note: that the matrix ∂WjhL has dimension d j−1
j × dL, the matrix ∂Wjhj has dimension

d j−1
j × dj , while matrices Mk have dimensions dk−1 × dk . thus, dimension of both sides match.

OPT4DL, A. Hashemi, Purdue ECE



Vanishing/Exploding Gradient Problems
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• Our learning signal is proportional to
∏L

k=j+1 Mk , a product that could be very large or very
small depending on the these matrices (and notably their eigen values).

• Vanishing gradient: Very small product means we cannot move very far from the initialization
(happening with deep networks and RNNs; fixes include LSTM, skip connection).

• Exploding gradient: Very large product means divergence and instability (happening with deep
networks; fixes include gradient clipping)

• Activation choice also plays a role
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Another Problem: Symmetry and Limited Capacity
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• Recall the motivation behind introducing nonlinearity and deep models was increased learning
capacity

• With a bad initialization, we cannot achieve this. Consider[
h(1)
h(2)

]
= σ

([
W11x(1) +W12x(2) + b(1)
W21x(1) +W22x(2) + b(2)

])
(162)

• Assume our initialization is such that W11 = W12 = W21 = W22 = α and b(1) = b(2) = β.
thus, h(1) = h(2)

• then, the gradients ∂Wijh(1) and ∂Wijh(2) are equal. Thus, using gradient-based updates, Wij ’s
will be the same, and so will the outputs

• Essentially, due to a symmetry, our two neurons reduce to only one neuron, hence limited
capacity

• Randomization could help to solve this and the vanishing/exploding gradient at the same time.
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Xavier Initialization
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• Idea: Weights initialized such that the signal strength moving from one side to the other side in
the network is preserved

• Thus, no drastic reduction or amplification leading to vanishing and exploding gradient,
respectively

• Let us consider linear activation of the linear regime of all activations (small signal regime)
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Xavier Initialization (Cont’d)
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• Consider a layer with W ∈ Rdout×din and call the input and outputs x and o for simplicity.
• Forward information propagation condition

E∥o∥2 =
dout∑
i=1

E[o2
i ] =

dout∑
i=1

E[
din∑
j=1

Wijxj ]
2 (163)

• Backward information propagation condition

E∥x∥2 =

din∑
j=1

E[x2
j ] =

din∑
j=1

E[
dout∑
i=1

Wijoi ]
2 (164)

• We assume E[x2
j ] = γ2

in, E[o2
i ] = γ2

out , E[W 2
ij ] = σ2, and that Wij ’s are zero mean

• Thus, our conditions imply

doutγ
2
out = doutdinσ

2γ2
in, dinγ

2
in = dindoutσ

2γ2
out (165)
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Xavier Initialization (Cont’d)
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• Imposing γ2
in = γ2

out

γ2
out = dinσ

2γ2
in, γ2

in = doutσ
2γ2

out

1 = dinσ
2, 1 = doutσ

2
(166)

• Thus, σ2 = 1/din and σ2 = 1/dout . As din ̸= dout , we instead set

σ2 =
1

avg(din, dout)
Wij ∼ N (0, σ2), or Wij ∼ U(−σ, σ) (167)

• Averaging can be arithmetic (din + dout)/2 or geometric mean
√
din × dout

• For ReLU’s we typically increase σ2 by a factor of 2 to compensate for the fact that half of the
signal is dropped

E[x2
j ] = γ2

in ⇔ E[max(0, x2
j )] = γ2

in/2 (168)

for a symmetric input x .
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Normalization Methods
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• Xavier Initialization essentially performs a normalization at initialization

• As the weights get updated, weights will change, and so will the strength of layer’s
output/activation

• Normalization methods extend this idea to normalize the outputs throughout training.

• Certain connection to adaptive training methods to ensure parameters are varying more or less
with the same rate

• Normalizing activations could lead to “smaller gradients”, hence lower effective Lipschitzness
and smoothness parameters G and L, thereby accelerating convergence.
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Batch Normalization
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• Consider a batch B of B vectors: u1, . . . , uB ∈ Rp (p = H ×W for a H ×W matrix)

• Think of these as activations associated with samples/data used in minibatch SGD

• Batch normalization utilizes a data-driven operation

BN(u) = α⊙ u − µB

σB + κ
+ β, ∀u ∈ B (169)

here α, β ∈ Rp are learnable parameters and

µB =
1
B

∑
u∈B

u ∈ Rp, σ2
B =

1
B

∑
u∈B
∥u − µB∥2 ∈ R (170)

are sample mean and variance.

• κ > 0 introduced for numerical stability and avoiding division by zero.

• Moderate B to avoid loss of information (small batch) and slow computation (large batch)
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Batch Normalization (Cont’d)
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• Moderate B to avoid loss of information (small batch) and slow computation (large batch)
• Moderate B leads to a noisy calculation during the training leads to better generalization.
• How to apply in conjunction with other operations?

h = Dropout(σ(BN(Wx + b))) (171)

• During inference, we use the statistics of the entire data to calculate the mean and variance of
each layer’s activation

µD =
1
n

∑
u∈D

u ∈ Rp, σ2
D =

1
n

∑
u∈D
∥u − µD∥2 (172)

Which can be approximated on the fly from mini-batch statistics found during training:

µD ←
1
t
µBt +

t

t + 1
µD, σ2

D ←
1
t
σ2
Bt

+
t

t + 1
σ2
D (173)
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Layer Normalization
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• A deterministic operation normalizing each vector u individually

LN(u) =
u − µu1
σu + κ

∈ Rp, µu =
1
p

p∑
i=1

u(i) ∈ R, σu =
1
p

p∑
i=1

|u(i)− µu|2 ∈ R (174)

• Almost scale free LN(u) = LN(αu), a property useful for stabilizing training
• Can be applied to image-like quantities with multiple channels (e.g., C = 3)
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Regularization



Motivation
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• We wish to optimize training loss to build models that generalize beyond the training set.
• Classical ML theory suggests reduction on generalization error tend to be as a result of

regularization: constraining the set of values that our parameters might take (model capacity
reduction)

• This view has let to certain approaches which we will view as noise injection
• However, in practice, our models have high capacity that can fit entire data

(overparameterization and interpolation). And by doing so, despite classical ML prediction,
generalize well too.
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Method A: ℓ-2 Regularization
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• One way to limit the model capacity is to constrain how large the parameters can get

min
w

f (w) + λ∥w∥22, f (w) = E[ℓ(w , z)] (175)

• Leads to better landscape (getting rid of saddles, local max., sharp local min), good for both
optimization and generalization. But we incur some bias
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ℓ-2 Regularization, Bias, and Model Capacity
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• Consider
w̃∗
j = argmin

w
f (w) + λj∥w∥22, j = 1, 2 (176)

• We can show
∥w̃∗

1 ∥ ≤ ∥w̃∗
1 ∥ ⇔ λ1 ≥ λ2 (177)

• Thus, as regularization becomes stronger optimal model becomes small and in the extreme
case all weights will be zero (no learning capacity)

• Let w∗ be the solution of unregularized problem. Assuming a L-smooth loss f , we can lower
bound the bias

Bias =
∥w∗ − w̃∗∥
∥w∗∥

≥ λL

1 + λL
, λL = λ/L (178)

• As λ increases, the bias increases.
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ℓ-2 Regularization, Optimization, and Weight decay
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• Better landscape is good for optimization (easier functions). Finding higher quality solutions
faster by (S)GD

• Consider GD for our regularized problem

min
w

f (w) + λ∥w∥22, f (w) = E[ℓ(w , z)] (179)

We have
ww+1 = wt − η(∇f (wt) + λwt) = (1− ηλ)︸ ︷︷ ︸

∈(0,1)

wt − η∇f (wt) (180)

called GD with Weight decay

• For simple methods like GD, ℓ-2 Regularization and Weight decay are equivalent. But not true
in general, e.g. ADAM
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Method B: Early Stopping
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• When training, maintain a validation set and monitor the validation loss
• Continue training until validation loss starts to increase
• Then, stop earlier than what you originally had in mind
• By stopping early, we are restraining the model to reach its maximum learning capacity, aka

regularization
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Connection Between ℓ-2 Regularization and Early Stopping
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• Consider a convex quadratic loss

f (w) =
1
2
(w − w∗)H(w − w∗), w∗ = argmin

w
f (w) (181)

and GD
wt+1 = wt − ηH(wt − w∗), w1 = 0 (182)

• Consider the Spectral decomposition H = UΛUT . Using simple steps we can show

U⊤wt =

(
Id(Id − ηΛ)⊤

)
U⊤wt parameter at time t of original prob.

U⊤w̃ =

(
Id(λId + Λ)−1λ

)
U⊤wt optimal solution of regularized problem

(183)

• wT ≈ w̃ if λT ≈ η−1

• For a fixed learning rate, stopping early is like larger regularization.
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Method C: Dropout
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• In training, dropout some neurons at random by zeroing out p fraction of them

h̃i = 0 with prob. p, h̃i =
hi

1− p
with prob. 1− p, (184)

such that E[h̃i ] = hi .
• By dropping neurons, we are restraining the model to reach its maximum learning capacity, aka

regularization
• In testing, disabled (like batch normalization), unless for uncertainty quantification
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Connection Between ℓ-2 Regularization and Dropout
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• Dropout is essentially injecting noise into our model and hence the learning problem. The noise
is independent of the activations and multiplicative in nature

• Let us use a simpler model to see the regularization effect of noise injection
• Consider a linear model

min f (w) = Ez [(y − w⊤h)2] (185)

• Think of h as the activation we will inject noise into. Here, for simplicity, an additive noise

h→ h + e, e indep. of x , E[e] = 0, E[ee⊤] = Σ (186)

• Note Σ = A⊤A ⪰ 0 is the covariance matrix and PSD
• We can show using simple steps

Ez,e [(y − w⊤(h + e))2] = Ez [(y − w⊤h)2] + ∥Aw∥22 (187)

Note: A similar idea used in Gaussian Smoothing and ZO-SGD.
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Noise Injection and SAM
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• We can also inject noise into w directly. Also, we can consider a small worst case noise, as
opposed to a random one

min
w

Ee,z [ℓ(w + e, z)], min
w

max
e: ∥e∥≤ρ

Ez [ℓ(w + e, z)] (188)

• The second formulation, with some approximation leads to

min
w

Ez [ℓ(w , z)] + ρ∥∇Ez [ℓ(w , z)]∥ (189)

• Called sharpness-aware minimization (SAM), useful for improved generalization through
penalizing sharpness/sensitivity

• We can penalize the growth of higher-order derivatives, e.g., Hessian, too.
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SAM and Improved Generalization
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• Flatter Minima are likely to generalize better
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Tuning Learning Rates



Motivation
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• Recall we showed minibatch SGD satisfies

1
T

T∑
t=1

Ez1:T ∥∇f (wt)∥2 ≲
∆

Tη
+

Lησ2

2B
(190)

and we set the η = min{ 1
L ,
√

2∆B
Lσ2T } to get the best bound

• A lot of unknowns. Common practice: set η to be a small constant.

• As we train the model, the first term disappears, but the second term remains.
• Fix: adopt a decreasing schedule of learning rates

◦ sublinear decay: η ∝ 1√
t

◦ exponential decay: η ← η/α, α > 1, after every E epochs

• Interpretation: Early phase of training, we may prefer larger progresses (large η). But, as we
approach the solution, we may need a more refined search (small η)

• To find the constants (e.g., the first learning rate), use Hyperparameter search

OPT4DL, A. Hashemi, Purdue ECE



Exponential Decay
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• Frequently used when training ResNets
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Role of Batch size
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• Recall our bound again
1
T

T∑
t=1

Ez1:T ∥∇f (wt)∥2 ≲
∆

Tη
+

Lησ2

2B
(191)

• Conceptually, even if η is constant, we can shrink the second term by increasing the batch size!
• Interpretation: Early phase of training, we may tolerate more noise (smaller B) in our gradient

estimation. But, as we approach the solution, we may need a more refined estimation (larger B)
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Warm-up
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• Gradually increase η to a target and then switch to a decaying schedule

• Can be interpreted as an attempt to bridge the gap between SGD and minibatch SGD
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Warm-up (Cont’d)
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• Recall, we argued when η = min{ 1
L ,
√

2∆B
Lσ2T }, in terms of a fixed budget (oracle complexity)

1
T

T∑
t=1

Ez1:T ∥∇f (wt)∥2 ≲
B

C
+

1√
C

(192)

B = 1 leads to a better worst-case bound, i.e., B steps of SGD better than one step of B-SGD
• Warm up could help bridge this gap in the larger gradient regime (early phase of training)
• Assume a small η ∝ B√

C
(tuning constants properly) and recalling C = B × T , from our bound

1
T

T∑
t=1

Ez1:T ∥∇f (wt)∥2 ≲
∆

Tη
+

Lησ2

2B
(193)

we can see the resultant worst-case bound becomes O(
√

1
C ), independent of batch size

• In small gradient regime (intermediate and final learning phases), gradient could be small w.r.t.
to the noise in gradient estimation, and likely SGD and B-SGD act similarly
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Cyclic Learning Rates
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• Repeated reset the model with the hope of a better starting point each time

ηt = ηmin +
1
2
(ηmax − ηmin)[1 + cos(

tπ

T
)] (194)

also called cosine-annealing or periodic schedule
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Cyclic Schedule as Multi-Step Risk Minimizer
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• At any point in the landscape wt , there are two bad things could happen in the immediate next
update wt+1

◦ We are at a flat landscape and are using a small η
◦ We are at a steep landscape and are using a large η

First one means slow progress and it’s bad, but second one could lead to divergence and that is
terrible

• With a constant η, we hedge against the second, by minimizing the one-step risk

• Cyclic Schedule could minimize Multi-Step Risks: what could happen n-th step from now
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One-step Risk
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• Consider GD and Convex Quadratic losses

f (w) =
1
2
w⊤Qw , LId ⪰ Q ⪰ µId , w∗ = 0, w+ = (Id − ηQ)w (195)

• Consider the one-step risk

R(η) := ∥w
+ − w∗∥
∥w − w∗∥

=
∥(Id − ηQ)w∥

∥w∥
= max

i=1,...,d
|λi (Id − ηQ)| = max{1− ηµ, Lη − 1} (196)

• And the best 1-step η can be found by solving the following linear program (solution where the
two line intersect)

η∗1 = arg min
0≤η≤1

max{1− ηµ, Lη − 1} = 2
µ+ L

(197)

can be calculated directly by analyzing GD (typical in classic convex optimization)
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Two-step Risk
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• Now consider a case where we are interested in 2-step risk minimization:

w+ = (Id − η+Q)w , w# = (Id − η#Q)w+,

η∗1 , η
∗
2 = arg min

η+,η#
R(η+, η#) := ∥w

# − w∗∥
∥w − w∗∥

= max
i=1,...,d

|λi (Id − (η+ + η#)Q + η+η#Q2)|

(198)
A more involved problem but can be solved using Chebyshev polynomials

1/η∗1 =
µ+ L

2
+

L− µ

2
√

2
, 1/η∗2 =

µ+ L

2
− L− µ

2
√

2
(199)

• That is, cycle between two learning rates

• Analyze for general training problems still open question...
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Motivation and Setup
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• Recall we showed minibatch SGD satisfies

1
T

T∑
t=1

Ez1:T ∥∇f (wt)∥2 ≲
∆

Tη
+

Lησ2

2B
(200)

and we set the η = min{ 1
L ,
√

2∆B
Lσ2T } to get the best bound. But there are lots of unknowns...

• Here we focus on estimating variance on the fly

E∥gt −∇f (wt)∥2 ≤ σ2 (201)

from the stochastic gradients we have observed so far: g1, . . . , gt . Note, these are NOT
independent random quantities.
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Towards Variance Estimation
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• To gain an intuition, let us assume they were i.i.d. with zero means

σ2 ≥ Var = E∥g∥2 ≈ 1
t

t∑
τ=1

∥gτ∥2 (202)

such that tσ2 ≈
∑t

τ=1 ∥gτ∥2.
• Let us then use this expression in our learning rate formula and SGD:

wt+1 = wt − ηtgt , ηt =
C√∑t

τ=1 ∥gτ∥2 + κ2
(203)

for some constant C where we also added κ > 0 for numerical stability.

• This method is called adaptive SGD.

• Like Normalization methods, we are normalizing a key quantity
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Handling Stochasticity
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• Note that ηt = C√∑t
τ=1 ∥gτ∥2+κ2

is not deterministic anymore as it depends on the random

gradients.

• For implication, consider the part of proof from SGD:

f (wt+1) ≤ f (wt) + ⟨wt+1 − wt ,∇f (wt)⟩+
L

2
∥wt+1 − wt∥2

= f (wt)− ηt⟨gt ,∇f (wt)⟩+
Lη2

t

2
∥gt∥2

(204)

where conditioned on wt (equivalently z1, . . . , zt−1)

Ezt [ηt⟨gt ,∇f (wt)⟩|wt ] ̸= ηtEzt [⟨gt ,∇f (wt)⟩|wt ] (205)

as ηt is depends on gt
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Handling Randomness of ηt
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• Let ηt = C√∑t
τ=1 ∥gτ∥2+κ2

for t ≥ 1 and η0 = C/κ

• Note that our learning rate schedule is causal,meaning it does not depend on future stochastic
gradients.

• Furthermore, our schedule is non-increasing as we are accumulating non-negative terms ∥gτ∥2

in its denominator.

• We can leverage these properties

f (wt+1) ≤ f (wt) + ⟨wt+1 − wt ,∇f (wt)⟩+
L

2
∥wt+1 − wt∥2

= f (wt)− ηt⟨gt ,∇f (wt)⟩+
Lη2

t

2
∥gt∥2

= f (wt)− ηt−1⟨gt ,∇f (wt)⟩︸ ︷︷ ︸
Term 1

+
Lη2

t

2
∥gt∥2 + (ηt−1 − ηt)⟨gt ,∇f (wt)⟩︸ ︷︷ ︸

Term 2

(206)
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Handling Randomness of ηt (cont’d)
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f (wt+1) = f (wt)− ηt−1⟨gt ,∇f (wt)⟩︸ ︷︷ ︸
Term 1

+
Lη2

t

2
∥gt∥2 + (ηt−1 − ηt)⟨gt ,∇f (wt)⟩︸ ︷︷ ︸

Term 2

(207)

• Term 1 has no issue with randomness anymore by causality

• Term 2 can be uniformly bounded by (ηt−1 − ηt)G
2 assuming uniformly bounded (stochastic)

gradients, e.g., by imposing G -Lipschitzness of sample loss ℓ(w , z)

• Using our previous proof techniques, notably the telescoping term∑T
t=1(ηt−1 − ηt)G

2 = G 2(η0 − ηT ) ≤ G 2η0 = G 2Cκ−1, we can establish the following result

Theorem
Assume f (w) = E[ℓ(w , z)] is L-smooth and ℓ(w , z) is G -Lipschitz. Furthermore, assume we
have access to an SFO and that z1, . . . , zT are statistically independent. Then, adaptive SGD
with learning rate ηt =

C√∑t
τ=1 ∥gτ∥2+κ2

satisfies E∥∇f (ŵ)∥2 ≃ O(κ−1/
√
T ).
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Integrating Exponential Moving Average (EMA)
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• Our method is basically a simple version of famous methods such as Adagrad, Adadelta,
RMSProp, and ADAM

• A key modification is using weighted averaging, putting emphasis on most recent observations

ηt =
C√∑t

τ=1 ∥gτ∥2 + κ2
→ ηt =

C√∑t
τ=1 β̃

t−τ∥gτ∥2 + κ2
, 0 < β̃ ≤ 1

• In terms of moving averages, ηt = C√
t×St+κ2 where

St = (1−1
t
)St−1+

1
t
∥gt∥2 → St = βSt−1+(1−β)∥gt∥2 (exponential moving average (EMA))

• For large t, simple average diminishes the contribution of new observation, but with a fixed β,
the contribution of new observation is not diminished with time.

• 1− 1
t → β Gives an idea that in practice β should be close to 1, e.g., β = 0.99
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EMA and Training Instability
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• One potential issue of EMA is losing the non-increasing property of ηt

ηt ≤ ηt−1 ≡ t × St ≥ (t − 1)× St−1 (208)

• The condition t × St ≥ (t − 1)× St−1 always happen for simple averaging, but if

∥gt∥2 ≤ St−1

(
1− 1

t(1− β)

)
(209)

it won’t happen for EMA. Likely to occur when t is large or β is small

• As a result, learning rates start to go up and lead to training instability and divergence issues
(even for convex problems).

• Fix 1: Ensure β ≈ 1 and do not overtrain

• Fix 2: Implement safeguarding: St ← max(St ,St−1
(t−1)

t ) to ensure the non-increasing property
of ηt holds (An idea leading to AMSgrad)
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Per-coordinate learning rates and curvature adaptivity
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• In deep learning, different parameters may exhibit gradients with widely varying magnitudes.
• The multi-dimensional loss function in deep learning could mean some directions exhibit steep

curvature while others are relatively flat.
• Per-coordinate learning rates: each parameter or group of parameters is updated with a

learning rate adapted to its own gradient statistics.

wt+1(i) = wt(i)− ηt(i)gt(i), ηt(i) =
C√∑t

τ=1 |gτ (i)|2 + κ2
(210)

• Similar motivation as normalization methods
• Can be analyzed by consider d one dimensional problems as

⟨gt ,wt − w∗⟩ =
d∑

i=1

gt(i)[wt(i)− w∗(i)] (211)

(And similar behavior for other important terms)
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A Physical Perspective
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• Consider the movement of a ball going downhill
• The ball will eventually stop somewhere with locally low potential energy
• The trajectory is described by Newton’s law of motion F = mẅ

• The ball experiences two forces: a force due to the potential energy −∇f (w) and a drag force
−ρẇ . Thus

mẅ = −ρẇ −∇f (w), ≡

{
ṗ = −α p

m −∇f (w)

ẇ = p
m

(212)

• Thus, conceptually, depending on the built up momentum p and the strength of the drag force,
the ball could reside at a point with the globally lowest potential.
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Deriving GD
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• Let us consider the case where the ball is a massless particle. Assuming its speed is less than
speed of light,

ẇ = −ρ−1∇f (w) called gradient flow (213)

• Using Euler’s discretization
wt+1 = wt − ρ−1∇f (wt) (214)

which is exactly our GD method

• Thus, GD shows the trajectory of massless or light ball

• Here, the momentum is zero and the ball may not be able to avoid getting stuck in a locally
low potential state

OPT4DL, A. Hashemi, Purdue ECE



Deriving the Heavy Ball Method
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• Let us now consider the heavy ball case. Using Euler’s discretization again (and after basic
manipulation and renaming the constants) we can show

wt+1 = wt − η∇f (wt) + β(wt − wt−1) (215)

or equivalently {
wt+1 = wt − ηpt

pt = βpt−1 +∇f (wt)
(216)

• This method is called the Heavy Ball Method with momentum parameter 0 ≤ β < 1 and serves
as a key ingredient in DL optimization

• The correction term could aid reaching higher quality solutions compared to simple GD
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Nesterov’s Accelerated Gradient Method
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• Assuming a time-varying drag force −ρ
t ẇ the law becomes

ẅ +
ρ

t
ẇ +∇f (w) = 0 (217)

• It turns our this ODE is intimately related to another method called Nesterov’s Accelerated
Gradient (NAG) {

wt+1 = wt − ηpt

pt = βpt−1 +∇f (wt − ηβpt)
(218)

• Called accelerated since it achieves an accelerated (and optimal) convergence rate compared to
GD for smooth and strongly convex functions.

• NAG and other accelerated variants of GD can also be thought of as better discretization of
our original law of motion, e.g., applying two-point Euler’s method.
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Momentum in DL
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• In the context of DL optimization, we typically use mt instead of pt and also use the following
variant {

wt+1 = wt − ηmt

mt = βmt−1 + (1− β)gt , m0 = 0
(219)

which we call SGD with momentum (SGDm)

• Essentially, the momentum performs an exponential moving average on all stochastic gradients
observed so far and uses that in the update

mt = (1− β)
t−1∑
k=0

βkgt−k (220)

OPT4DL, A. Hashemi, Purdue ECE



Momentum as a new Gradient Estimator
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• Recall under the SFO assumption, gt is (conditionally) an unbiased estimator of ∇f (wt) with
variance σ2

• In SGDm, we use mt = βmt−1 + (1− β)gt , m0 = 0 instead of gt to update our parameter

• Note that from an estimation perspective, this leads to bias as

Ezt [mt |z1:t−1] = Ezt [βmt−1 + (1− β)gt |z1:t−1]

= βEzt [mt−1|z1:t−1] + (1− β)Ezt [gt |z1:t−1]

= βEzt [mt−1|z1:t−1] + (1− β)∇f (wt) ̸= ∇f (wt)

(221)

• But, perhaps we are gaining some reduction in the variance σ2 and as a result a reduction in
total estimation error
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Implicit Mini Batching
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• Recalling m0 = 0 and expanding mt = βmt−1 + (1− β)gt over time

mt = (1− β)
t−1∑
k=0

βkgt−k (222)

• To gain intuition, let us assume each gt−k is an independent unbiased estimator ∇f (wt) with
variance E∥gt−k −∇f (wt)∥2 ≤ σ2. Our first take away is that

E[mt ] = ∇f (wt) · (1− β) ·
t−1∑
k=0

βk = ∇f (wt) · (1− β) · (1− βt)

(1− β)
= ∇f (wt) · (1− βt) (223)

so we have a bias that is vanishing as we train our model and t →∞. This observation
provides a way to “de-bias” the momentum by dividing with (1− βt)

mt = βmt−1 + (1− β)gt , m̂t = mt/(1− βt), wt+1 = wt − ηm̂t (224)
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Implicit Mini Batching (Cont’d)
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• Let us now consider the variance of de-biased momentum m̂t under our simple setting

E∥m̂t −∇f (wt)∥2 =

∥∥∥∥∥ (1− β)

(1− βt)

t−1∑
k=0

βkgt−k −∇f (wt)

∥∥∥∥∥
2

= E

∥∥∥∥∥ (1− β)

(1− βt)

t−1∑
k=0

βk [gt−k −∇f (wt)]

∥∥∥∥∥
2

=
(1− β)2

(1− βt)2

t−1∑
k=0

β2kE∥gt−k −∇f (wt)∥2

≤ σ2 (1− β)2

(1− βt)2

t−1∑
k=0

β2k = σ2 1− β2t−1

(1− βt)2︸ ︷︷ ︸
:=B(t)

(1− β)2

1− β2 = σ2 1− β

1 + β
B(t)

(225)
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Implicit Mini Batching (Cont’d)
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• B(t) = 1−β2t−1

(1−βt)2 is a decreasing function of t ≥ 1 and approaches to 1 as t →∞
• Thus, we have shown as we train the variance of de-biased momentum decreases

• Let us now assume B(t) ≈ 1 and we use a large momentum parameter like β = 0.9

E∥m̂t −∇f (wt)∥2 ≈ B(t)
1− β

1 + β
σ2 ≈ 1− β

1 + β
σ2 ≈ 1− 0.9

1 + 0.9
σ2 ≈ σ2

20
(226)

effectively a mini-batch SGD with batch size 20.

• Important Remark: Our intuitive analysis is not precise and even the de-biased momentum
suffers from some bias. We will develop a formal study soon.
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The ADAM optimizer
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ADAM, leverages theses four component into an effective method: momentum, de-basing,
adaptive η, per coordinate η (and optionally weight-decay):

• zt ∼ pz (Generating a mini batch)

• gt = ∇ℓ(wt , zt)+λwt (compute the stochastic gradient)

• mt = β1mt−1 + (1− β1)gt (compute the momentum)

• m̂t = mt/(1− βt
1) (de-bias the momentum)

• St(i) = β2St−1(i) + (1− β2)|gt(i)|2 (EMA for adaptive per coordinate variance estimation)

• Ŝt(i) = St(i)/(1− βt
2) (de-bias the variance)

• ηt(i) = η̃t(i)/
√

κ2 + Ŝt(i) (adaptive per coordinate learning rate)

• wt+1(i) = [1− ληt(i)]wt(i)− ηt(i)m̂t(i) (parameter update)
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Momentum and Gradient Estimation
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• Recall under the SFO assumption, gt is (conditionally) an unbiased estimator of ∇f (wt) with
variance σ2

• In SGDm, we use mt = βmt−1 + (1− β)gt , m0 = 0 instead of gt to update our parameter

• Note that from an estimation perspective, this leads to bias as

Ezt [mt |z1:t−1] = Ezt [βmt−1 + (1− β)gt |z1:t−1]

= βEzt [mt−1|z1:t−1] + (1− β)Ezt [gt |z1:t−1]

= βEzt [mt−1|z1:t−1] + (1− β)∇f (wt) ̸= ∇f (wt)

(227)

• What is the impact on convergence? Let us assuming L-smoothness

f (wt+1) ≤ f (wt)− η⟨mt ,∇f (wt)⟩+
Lη2

2
∥mt∥2 (228)

The usual analysis breaks since the E[⟨mt ,∇f (wt)⟩|z1:t−1] ̸= ∥∇f (wt)∥2.
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Role of Estimation Error
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• Let et := mt −∇f (wt) be our total estimation error for SGDm

• Recall for SGD et := gt −∇f (wt) such that E[∥et∥2|z1:t−1] ≤ σ2

Lemma 1
If η ≤ 1/4L, for SGDm we have

∥∇f (wt)∥2 ≤
4
η

(
f (wt)− Ezt [f (wt+1)|z1:t−1]

)
+ 3E[∥et∥2|z1:t−1] (229)

• Recall, we had a result for SGD the second term was effectively ησ2

• Thus, if we hope for convergence, E[∥et∥2|z1:t−1] must be small, e.g. O(η). That is, despite
the small bias, variance reduces by a lot, hence estimation error and in turn convergence error
reduces.
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Evolution of the Error
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• Let us rewrite Let et+1 := mt+1 −∇f (wt+1)

et+1 = βmt + (1− β)gt+1 −∇f (wt+1)±∇f (wt)

= βet + (1− β)(gt+1 −∇f (wt+1)) + β(∇f (wt)−∇f (wt+1))
(230)

• When β < 1 the first term vanishes exponentially. The second term is also small and assuming
a slow evolution of model parameters ∇f (wt) ≈ ∇f (wt+1) and the third term is also small.

Lemma 2
Under the SFO assumption, SGDm’s error satisfies the following recursion

E∥et+1∥2 ≤ βE∥et∥2 + A(1− β)E∥∇f (wt)∥2 + Ã(1− β)2σ2 (231)

for some positive constants A, Ã > 0 when η = C (1− β)/L.
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Theorem
Assume f (w) = E[ℓ(w , z)] is L-smooth. Furthermore, assume we have access to an SFO and
that z1, . . . , zT are statistically independent. Then, SGDm with learning rate η = C (1− β)/L

and momentum parameter 1− β = O(1/
√
T ) satisfies E∥∇f (ŵ)∥2 ≃ O(1/

√
T ).

• The theorem highlights that the momentum parameter should be very large, e.g., β = 0.99,
consistent with practice.

• Similar results hold under normalization

mt = βmt−1 + (1− β)gt , wt+1 = wt − η
mt

∥mt∥+ κ
(232)

• Thus, despite a biased estimation, convergence occurs as the estimation error vanishes, thanks
to variance reduction, as the algorithm converges (a virtuous cycle). Other/better ways to
reduce variance?
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• The proof relies on the idea of defining a potential function and tracking its evolution

• We actually had potential functions before which we worked with implicitly:

Φt = ∥wt − w∗∥2 for cvx and Lip. function, Φt = E[f (wt)]− f ∗ for smooth function
(233)

and we studied Φt+1 − Φt = E[f (wt+1)− f (wt)] using L-smoothness

• Generalizable Template: Augment with above sources of errors, in this case, the estimation error

Φt = E[f (wt)]− f ∗ + CeE∥et∥2 (234)

• Study the evolution of potential by summing over its consecutive differences:

T∑
t=1

Φt+1 − Φt = ΦT+1 − Φ1 ≥ f ∗ − f (w1)− CeE∥e1∥2 (235)
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Proof Sketch (Cont’d)
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• By the definition of potential

T∑
t=1

Φt+1 − Φt =

( T∑
t=1

E[f (wt+1)− f (wt)]

)
+

(
Ce

T∑
t=1

E∥et∥2
)

(236)

• First term dealt with by Lemma 1 (Smoothness) and Second term dealt with by Lemma 2
(evolution of estimation error)

• The nice property of error

E∥et+1∥2 ≤ βE∥et∥2 + other terms, 0 < β < 1 (237)

ensures we can find a good constant Ce to ensure convergence.

• This idea can be utilized in a variety of learning settings (we will discuss a few more cases).
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Variance Reduction
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• Recall mt is a new estimator of ∇f (wt) with some bias and lower variance than gt .
• How can we get better variance reduction? One idea is Control variates from Statistics
• Let G be an unbiased estimator of F . Consider X and Y s.t. E[Y ] = E[X ].
• Consider the new estimator

Z = G + β(X − Y ) (238)

• Let us calculate the mean and variance of Z

E[Z ] = E[G + β(X − Y )] = E[G ] + βE[x ]− βE[Y ] = F

E∥Z − F∥2 = E∥G − F∥2 + β2E∥X − Y ∥2 + 2βE[⟨G − F ,X − Y ⟩]
(239)

• That is, if X − Y is negatively correlated with G such that

2E[⟨G − F ,X − Y ⟩] ≤ βE∥X − Y ∥2, (240)

we may get a reduction in variance and retain unbiasedness.

OPT4DL, A. Hashemi, Purdue ECE



Control variates in Optimization
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• Consider the following update vector and iterates wt+1 = wt − ηut

Z = G + β(X − Y ), ut = ∇ℓ(wt , zt) + 1 · (∇f (v)−∇ℓ(v , zt)) (241)

for some reference point v

• Since E[∇ℓ(v , zt)] = ∇f (v), and E[ℓ(wt , zt)] = ∇f (wt), ut is unbiased.

• Let us assume both f and ℓ are L-smooth. Using basic techniques we can show

E∥ut −∇f (wt)∥2 ≲ L∥wt − v∥2 (242)

• Obviously, v = wt leads to the least variance, but too costly.

• Main idea: Only update the reference once in a while to trade some variance for computational
efficiency
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SVRG Algorithm
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Consider the ERM objective f (w) = 1
N

∑N
i=1 ℓ(w , zi )

• Initialize w1 and v1 = w1, set e = 1 (the epoch counter)

• Compute ∇f (v1) O(N) gradient computation

• for t = 1, . . .T
◦ sample a batch zt ∼ pz

◦ form the update vector ut = ∇ℓ(wt , zt) +∇f (ve)−∇ℓ(ve , zt) 2 gradient computation
◦ parameter update wt+1 = wt − ηut
◦ if t ≡ 0 mod N (finishing one epoch, i.e., going over all training data)

□ e ← e + 1 increase epoch counter
□ ve = wt update the reference
□ update the reference gradient ∇f (ve) O(N) gradient computation every N iterations

Thus, if T = EN, the total gradient computation is 3EN = 3T (i.e., 3 times SGD’s)
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SVRG vs. SGD vs GD
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• Recall, the oracle complexity of GD to find a stationary solution was O(N/ϵ)

• Recall, the oracle complexity of SGD to find a stationary solution was O(1/ϵ2)
• It turns out the oracle complexity of SVRG to find a stationary solution is O(N + N2/3

ϵ )

• SVRG is better than GD if

N +
N2/3

ϵ
≤ N/ϵ ≡ ϵ−2 >

N1/3

N1/3 − 1
≈ 1 always the case (243)

• SGD is better than SGD if

1/ϵ2 ≤ N/ϵ ≡ ϵ−2 < N almost always the case in DL (244)

• SVRG is better than SGD if

N +
N2/3

ϵ
≤ 1/ϵ2 ≡ ϵ−1.5 > N almost never the case in DL! (245)
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• For simple ML problems, not an issue, but for DL when using batch normalization, dropout,
and data augmentation, this leads to ineffectiveness of variance reduction.

• The issue can be attributed to the finite-sum assumption f (w) = 1
n

∑n
i=1 ℓ(w , z).

• SVRG assumes whenever a z is sampled, the loss ℓ(w , z) is returned. Not true in DL!
• let ρ denote the randomness due to normalization, dropout, and data augmentation. In fact,
ℓ(w , z) = Eρ[ℓ̃(w , zi , ρ)]. Consequently, the sum is infinite.
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Role of Data Augmentation
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• In practice, to improve generalization and robustness, we not only use a sample z (say an
image), but also its transformations (e.g., cropping, rotation, flipping), in training.

• In many DL packages, a transformation is chosen randomly any time we process a given z .

• Consider image z̃ and assume we will use it in iteration t

• Recall ut = ∇ℓ(wt , z̃) +∇f (ve)−∇ℓ(ve , z̃) . Also recall ∇f (ve) is calculated outside an epoch
while ∇ℓ(ve , z̃) is calculated inside the epoch.

• z̃ appears with transformation T1 in orange terms and T2 in the blue term, Implying we may
incur an estimation error due to bias and increased variance.
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Role of Data Augmentation (Cont’d)
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• A solution: Transformation Locking, meaning store the transformation used outside epoch and
reused it inside epoch

• Nonetheless, as model updates, variance goes up, meaning, ve not a good reference anymore.
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Role of Dropout and Batch Normalization
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• Dropout issue is similar to data augmentation as outride and inside epoch, different sparsity
patterns are used. So, we can implement a similar locking solution.

• Issue with BN is complicated and two folds
• First, ∇ℓ(wt , z̃) will now depends on other samples too, not just z̃

∇ℓ(wt , z̃ ;B1) ̸= ∇ℓ(wt , z̃ ;B2), B1 ̸= B2 (246)

Implication: increased bias and variance in SVRG estimator due to the epoch-based structure
• Secondly, recall during inference, we use the statistics of the entire data to calculate the mean

and variance of each layer’s activation from mini-batch statistics found during training:

µD ← βµBt + (1− β)µD, σ2
D ← βσ2

Bt
+ (1− β)σ2

D (247)

• Default implementation won’t compatible with SVRG as we compute the (µBt , σ
2
Bt
) of a

specific batch at both wt and ve .
• Solution: make sure statistics at ve not used (batch reset)
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Fixing SVRG
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• In summary, we have issues due to the epoch-based structure and the finite-sum assumption
and their incompatibility with DL operations.

• Ideally, we want to update the reference on the fly in each iteration. But doing so may be
costly (e.g., requiring full gradient)

• Solution: Approximate control variates! Recall we said consider X and Y s.t. E[Y ] = E[X ] and
the estimator

Z = G + β(X − Y ) (248)

• Let us relax the condition such that now E[Y ] ≈ E[X ]. Implication: some bias which we may
control by finding a good β. Seems like Bias-variance tradeoff then! Connection to momentum?
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SGDm as Approximate control variates
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• Let us recall our SGDm update vector: mt = βmt−1 + (1− β)∇ℓ(wt , zt), m0 = 0

• Let us do a rearrangement

mt = ∇ℓ(wt , zt) + β(mt−1 −∇ℓ(wt , zt)), Z = G + β(X − Y ) (249)

• Intuitively, mt−1 is a good approximation of ∇f (wt−1) while ∇ℓ(wt , zt) is a good
approximation of ∇f (wt)

• under slow evolution assumption wt−1 ≈ wt so

mt−1 ≈ ∇f (wt−1) ≈ ∇f (wt) ≈ ∇ℓ(wt , zt) (250)

Hence SGDm as like Approximate control variates

• This discussion helps us to develop a better method by using something better to reduce the
approximation bias
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De-Biasing SGDm
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• Previously, we talked about a de-biasing step: mt = βmt−1 + (1− β)∇ℓ(wt , zt),
m̂t = mt/(1− βt)

• Consider our previous discussion: mt−1 is a good approximation of ∇f (wt−1) while ∇ℓ(wt , zt)

is a good approximation of ∇f (wt)

• What if we change ∇ℓ(wt , zt) to something that is a good approximation of ∇f (wt−1) instead?

• A candidate: ∇ℓ(wt−1, zt) leading to the method

wt+1 = wt − ηmt , mt = ∇ℓ(wt , zt) + β(mt−1 −∇ℓ(wt−1, zt)) (251)
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De-Biasing SGDm vs SVRG
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• Our new estimator mt = ∇ℓ(wt , zt) + β(mt−1 −∇ℓ(wt−1, zt))

• Compared with SVRG’s ut = ∇ℓ(wt , zt) + 1 · (∇f (v)−∇ℓ(v , zt))
◦ Our reference point is now wt−1 which is much closer to wt than v

◦ We approximately calculate the full gradient at reference by using mt−1,
◦ all calculations inside epoch as opposed to SVRG
◦ using two gradient calculations in each iteration, like SVRG
◦ Using β < 1 to tame the approximation bias as opposed to β = 1 in SVRG
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Theorem
Assume f (w) = E[ℓ(w , z)] and ℓ(w , z) are both L-smooth. Furthermore, assume we have
access to an SFO and that z1, . . . , zT are statistically independent. Then, the de-biased
SGDm with learning rate η = O( 1

T1/3 ) and momentum parameter 1− β = O( 1
T2/3 ) satisfies

E∥∇f (ŵ)∥2 ≃ O( 1
T2/3 ).

• Recall for SGD: η = O( 1
T1/2 ), E∥∇f (ŵ)∥2 ≃ O( 1

T1/2 )

• Recall for SGDm: η = O( 1
T1/2 ), 1− β = O( 1

T1/2 ), E∥∇f (ŵ)∥2 ≃ O( 1
T1/2 )

• Thus, we get a provably better rate compared to both SGD and SGDm

• We are then using larger learning rates and momentum parameters, thanks to the reduced
approximation bias.

• Recently shown optimal under the stated assumptions
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• Like SGDm proof, we consider and analyze the evolution of the approximation error
et = mt −∇f (wt) and obtain

E∥et∥2 ≤ βE∥et−1∥2 + other terms (252)

• We then define a potential function (again like SGDm proof)

Φt = E[f (wt)]− f ∗ + CeE∥et∥2 (253)

• Study the evolution of potential by summing over its consecutive differences

• When β < 1 we can find a good constant Ce to ensure convergence.
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• So far, we discussed training
tasks such as minimizing f (w) = 1

n

∑n
i=1 ℓ(w , zi )

(or abstractly, f (w) = Ez∼D [ℓ(w , z)])
assuming data is all in one place

• In many settings, data is generated and
is held locally by many devices or agents. Essentially,

min
w

f (w) =
1
K

K∑
j=1

fj(w), fj(w) = Ez∼Dj [ℓ(w , z)] (254)

• We call f and fj the global and local loss respectively.
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• All agents send their data to a central entity called Server

• Remark: We
use Server, aggregator, and fusion center interchangeably

• Remark: We use agent, client,
worker, participant, device, and node interchangeably

• Features
◦ Data integrity no preserved
◦ Communication

issues if data size larger than agents’ capability
◦ Potential bottleneck at server if many agents
◦ Fast and accurate training
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• Instead of sharing
raw data, agents share model-based representation
of local data through (repeatedly) communicating
∇fj(wt) or similar quantities with server

• For t = 1, . . . ,T Communication/training rounds
◦ server sends the current global model w̄t to the agents
◦ each agent computes and

sends ∇fj(w̄t) or w j
t+1 = w̄t − η∇fj(w̄t) to the server

◦ Server aggregates
the recieved messages and update the global model

w̄t+1 = w̄t − η
1
K

K∑
j=1

∇fj(w̄t), w̄t+1 =
1
K

K∑
j=1

w j
t+1 (255)
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Parallel Learning (Cont’d)
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• Features
◦ Improved level of preserving data integrity
◦ Taking advantage of local computation
◦ communication issues if model size larger than agents’ capability
◦ Potential bottleneck at server if many agents
◦ Delay due to stragglers in synchronous systems

• We think of the averaging operator

w̄t+1 = w̄t − η
1
K

K∑
j=1

∇fj(wt), w̄t+1 =
1
K

K∑
j=1

w j
t+1 (256)

as an aggregation mechanism. Essentially maximizing Utilitarian Welfare.

• Can define other mechanisms based on other notions, e.g., egalitarian welfare (minimizing the
worst loss).

OPT4DL, A. Hashemi, Purdue ECE



Federated Learning
Machine
Intelligence
Networked
Data
Science

&

• Can be thought of as approximate Parallel Learning to reduce communication and computation
by trading off accuracy and precision

• Periodic Communication: Instead of communicating local gradients or local model updates
after 1 local step, do so after E > 1 local steps

w j
t,τ+1 = w j

t,τ − η∇fj(w j
t,τ ), τ = 1, . . . ,E , w j

t,1 = w̄t , w j
t,E+1 = w j

t+1 (257)

• Can be thought of as approximate solving minimizing the local loss when initializing at w̄t :

w j
t,E+1 = w j

t+1 ≈ argmin fj(w) = Ez∼Dj [ℓ(w , z)] (258)

• Partial Participation: Each communication round, only a subset St of r < N agents participate

w̄t+1 =
1
r

∑
j∈St

w j
t+1 (259)
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• Agents may have
different communication and computation capabilities

• Computation: agent i could
be able to do more local steps than agent j , Ei > Ej

• Communication 1: agent i could
be able to participate more frequently than agent j

• Communication 2: agent i could be able to send
higher precision messages (more bits) than agent j

• Could lead to fairness issues
as the typical method could favor more capable clients
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• Each agent holds different loss as a result of different data, Di ̸= Dj

• Integration of partial participation and periodic communication leads to convergence issues.

• Let us rewrite our simple aggregation

w̄t+1 =
1
r

∑
j∈St

w j
t+1 =

1
r

∑
j∈St

w̄t − η

E∑
τ=1

∇fj(w j
t,τ )

= w̄t − η
1
r

∑
j∈St

E∑
τ=1

∇fj(w j
t,τ ) := w̄t − η

1
r

∑
j∈St

g j
t,E

(260)

Resembling mini-batch SGD.

• One way to deal with these issues then is to use aggregations mimicking momentum to reduce
the variance stemming from statistical heterogeneity.
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• No server, only peer-to-peer (p2p) communications, effectively each agent serving as its own
local aggregator

• Mathematically, communication governed by a graph

• Lower graph degree implies lower communication bottleneck and lower delay

• Lower connectivity implies slower propagation of information and hence a slower convergence

• Synchronous communication could still cause delay issues
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Decentralized Learning (Cont’d)
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• Let Nj be the set of neighbors of agent i and note i ∈ Ni

• Each agent computes and sends the aggregation of the messages recieved from its neighbors:

w i
t+1 =

( 1
|Ni |

∑
j∈Ni

w j
t

)
− η∇fi (w i

t ), w i
t+1 =

1
|Ni |

∑
j∈Ni

(
w j
t − η∇fi (w j

t )
)

(261)

• Remark: A fully connected graph with no server node is equivalent to a star graph with a server
node. Thus, parallel learning is an example of Decentralized Learning

• Remark: Federated Learning is also an example of Decentralized Learning with a sequence of
(disconnected) time-varying graphs
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• Assume we have K agents each with a different loss function

• Agents iterative communicate over a graph to find

w∗ = argmin
w

f (w) =
1
K

K∑
j=1

fj(w), fj(w) = Ez∼Dj [ℓ(w , z)]

(262)

• At convergence, each agent’s
solution should be w∗, i.e., they should reach a consensus.
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• We can only hope to find a solution if the agents can communicate

• We assume a connected graph, that means there is at least one path between any two agents

• Intuitively, higher connectivity means faster convergence due to messages reaching the
destination faster
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Communication graph (Cont’d)
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• Formally, G(N , E) where N = {1, . . . ,K} is the set of agents and E is the set of edges
• {i , j} ∈ E if there is an edge from agent i to agent j , meaning, i can send a message to j

• Note, the communication could in general be asymmetric meaning {i , j} ∈ E but {i , j} /∈ E .
Meaning, the graph could be a directed graph

• We will however, assume the graph is undirected for simplicity.
• Let Ni be the set of neighbors of agent i and note i ∈ Ni

• More generally, we assume the communication is weighted and there is a weight matrix W that
governs the communication among agents such that W ∈ RK×K , 0 ≤Wij
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Communication graph (Cont’d)
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• Since each node can send a message to itself Wii > 0

• Since the graph is undirected Wij = Wji , meaning W is a symmetric matrix W = W⊤

• Since {i , j} ∈ E if there is an edge between agent i and agent j

{i , j}, {j , i} ∈ E ≡ Wij = Wji ̸= 0 (263)

• For each agent j , let us also normalize the weights for incoming messages sum to 1
K∑
i=1

Wij = 1 ≡ 1⊤W = 1⊤, called Column stochastic (264)

• And since graph is undirected and W is symmetric
K∑
j=1

Wij = 1 ≡ W 1 = 1, called Row stochastic (265)
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Doubly Stochastic Weight Matrix
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• A matrix that
is both row and column stochastic is called doubly stochastic

• Example: given any connected graph set

Wij =
1

max{degree(i), degree(j)}
, i ̸= j

and Wii = 1−
∑

j∈Ni
Wij

• Remark: since an agent can communicate
with itself and the graph is connected, degree(i) ≥ 2

OPT4DL, A. Hashemi, Purdue ECE



Average Consensus
Machine
Intelligence
Networked
Data
Science

&

• Recall our goal is

w∗ = argmin
w

f (w) =
1
K

K∑
j=1

fj(w), fj(w) = Ez∼Dj [ℓ(w , z)] (266)

• At convergence, each agent’s solution should be w∗, i.e., they should reach a consensus.
• Let us first consider the case where fj(w) = 0.5∥w − xj∥2, xj ∈ Rd . It tuns out fj ’s and hence f

are strongly convex.
• We can then easily calculate

w∗ =
1
K

K∑
j=1

xj = x̄ , Finding the average (267)

• This problem is called average consensus. Remember, we want to solve this over a graph
• A fully connected graph means by one exchange of local vectors xj , each agent can compute

the average (convergence in one iteration). How about general graphs?
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Average Consensus Method
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• Let us define a matrix X̄ = x̄1⊤ = [x̄ , . . . , x̄ ] ∈ Rd×K

• Then, it is not hard to see that

X̄ · 1
K

11⊤ = x̄1⊤ · 1
K

11⊤ = x̄1⊤ = X̄ (268)

• But, for a fully connected graph, W = 1
K 11⊤ (all entries are 1/K using a uniform weighting).

That is,
X̄ = X̄W , a fixed point condition (269)

• Turns out this is true for all connected graphs with any doubly stochastic W .
• How do we find fixed points? Fixed point iteration (recall the connection to GD)
• Our method is then: Initialize local solutions x i1 and run the following local step for t iterations

x it+1 =
∑
j∈Ni

Wijx
i
t , ≡ X t+1 = X tW in matrix form (270)

where X t = [x1
t , . . . , x

K
t ] ∈ Rd×K .
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Theorem
Assume the graph is connected and W is doubly stochastic. Define the consensus error as

et =
1
K
∥X t − X̄∥2F =

1
K

K∑
j=1

∥x jt − x̄∥2 (271)

Then, using the Banach Fixed point theorem, it holds that et+1 ≤ |λ2(W )|2et , where
|λ2(W )| is the second largest eigenvalue of W (in magnitude)

• Assuming W is doubly stochastic and recalling W 1 = 1 means λ = 1 is an eigenvalue and in
fact the maximum eigen value of W .

• The quantity 0 ≤ ρ := 1− |λ2(W )| ≤ 1 is called the spectral gap of W

• Large ρ means better connectivity and faster convergence (ρ = 1 for a fully connected graph)

• small ρ means worse connectivity and slower convergence (ρ = 0 for a disconnected graph)
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From consensus to Training: decentralized SGD
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• Recall our problem is

w∗ = argmin
w

f (w) =
1
K

K∑
j=1

fj(w), fj(w) = Ez∼Dj [ℓ(w , z)] (272)

and for consensus

x it+1 =
∑
j∈Ni

Wijx
i
t , ≡ X t+1 = X tW in matrix form (273)

• That is, everyone shares their model updates and perform local aggregation. For general
training problems, we can follow a similar pattern:

x it+1 =
∑
j∈Ni

Wij

(
x it − ηg i

t

)
, ≡ X t+1 =

(
X t − ηG t

)
W in matrix form (274)

where G t = [g1
t , . . . , g

K
t ] ∈ Rd×K .

OPT4DL, A. Hashemi, Purdue ECE



Convergence Analysis
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Theorem
Assume the graph is connected and W is doubly stochastic with spectral gap ρ. Define the
consensus error as

et =
1
K
∥X t − X̄ t∥2F =

1
K

K∑
j=1

∥x jt − x̄t∥2 (275)

where x̄t =
1
K

∑K
j=1 x

j
t , and X̄ t = [x̄t , . . . , x̄t ] ∈ Rd×K . Assume f is L-smooth. Furthermore

assume we have access to an SFO and that z1, . . . , zT are statistically independent. Then, If
η = O(ρ/

√
T ),

1
T

T∑
t=1

E∥∇f (x̄t)∥2 +
1
T

T∑
t=1

E[et ] = O(
1√
T

poly(
1
ρ
)). (276)

• The average iterates x̄t (an unknown quantity to the agents) is a first-order solution
• The consensus error vanishes so everyone is reaching x̄t (consensus)

OPT4DL, A. Hashemi, Purdue ECE



Proof Sketch
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• Instead of studying the performance of K local models, we consider how the average model x̄t
(a virtual sequence unknown to the agents) performs. At the same time, we study the evolution
of the important source of error, the consensus error.

• For consensus error, using our assumptions we can establish

E[et+1] ≤ (1− ρ)E[et ] + other terms (277)

immediate reminding us of the potential-based analysis

• We then define a potential function

Φt = E[f (x̄t)]− f ∗ + CeE[et ] (278)

• Study the evolution of potential by summing over its consecutive differences

• When ρ < 1 we can find a good constant Ce to ensure convergence.
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• Agents share model-based
representation of local data through (repeatedly)
communicating g j

t with server (or each other)
• For t = 1, . . . ,T Communication/training rounds

◦ server sends the current global model w̄t to the agents
◦ each agent computes and sends g j

t to the server
◦ Server aggregates

the recieved messages and update the global model

w̄t+1 = w̄t − η
1
K

K∑
j=1

g j
t (279)

• Recall g i
t ∈ Rd and we need O(32d) bits for each

message.
• How to do this if agents have low communication

resources?
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Compression as a Solution
Machine
Intelligence
Networked
Data
Science

&

• We will send C(g j
t ) where C(·) is a compression mechanism

• Quantization: reduce the precision (bits) of each coordinate from 32 to q = 1, 2, 4, 8, 16 bits,
saving O(32/q) in communication resources

• Example: x = [1.7,−2.6,−3.5] and q = 1 (sending the signs): C(x) = [1,−1,−1]

• Sparsification: Only communicate k out of the d coordinates (and their indices), saving
O(d/k) in communication resources

• Example: x = [1.7,−2.6,−3.5] and k = 1 (selecting the largest entry): C(x) = [0, 0,−3.5]

• Low-rank Factorization: When the gradients are matrices or tensors, find their low rank
approximation and communicate that:
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Good Compression Mechanisms and Examples
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• C(g j
t ) can be thought of as the estimator of g j

t . Thus, a compression is a good one if it has a
low estimation error (low bias and variance)

E∥C(x)− x∥2 = E∥C(x)− E[C(x)]∥2︸ ︷︷ ︸
Variance

+ ∥E[C(x)]− x∥2︸ ︷︷ ︸
Bias

(280)

where E is w.r.t. the random of C
• Random Sparsification: Uniformly at random select k out of d coordinates.

◦ It turns out E[C(x)] = k
d
x so we have some bias

◦ It turns out E∥C(x)− x∥2 ≤ (1− k
d
)∥x∥2

◦ Can be made unbiased by using C̃(x) = d
k
C(x)

◦ But, doing so results in variance blowup: E∥C(x)− x∥2 ≤ ( d
k
)2∥x∥2

◦ Takeaway 1: The biased version seems to be better in terms of estimation error
◦ Takeaway 2: For both versions, the error vanishes as x → 0, happens when x is (an estimator of)

the gradient.
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Good Compression Mechanisms and Examples (Cont’d)
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• Top-k Sparsification: select k largest out of d coordinates
◦ A deterministic operator and thus will have a bias
◦ should be no worse that random sparsification so ∥C(x)− x∥2 ≤ (1− k

d
)∥x∥2

◦ the error vanishes as x → 0, happens when x is (an estimator of) the gradient.

• Random Dropout: set C(x) = x with probability p (full communication) and set C(x) = 0 with
probability 1− p (no communication)
◦ It turns out E[C(x)] = px so we have some bias
◦ It turns out E∥C(x)− x∥2 ≤ (1− p)∥x∥2

◦ Can be made unbiased by using C̃(x) = 1
p
C(x)

◦ But, doing so results in variance blowup: E∥C(x)− x∥2 ≤ ( 1
p
)2∥x∥2

◦ Takeaway 1: The biased version seems to be better in terms of estimation error
◦ Takeaway 2: For both versions, the error vanishes as x → 0, happens when x is (an estimator of)

the gradient.
◦ Takeaway 3: on average, random dropout and random sparsification are identical with p = k/d
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• Normalize x by forming u = x
∥x∥ ⊙ sign(x)

• Each coordinate of u is in [0, 1] and we can quantize each separately and randomly into q levels
to obtain ũ

• Send C(x)∥x∥ ⊙ sign(x)⊙ ũ

◦ It can be shown it is unbiased E[C(x)] = x

◦ The variance satisfies E∥C(x)− x∥2 ≤ min{ d
s2 ,

√
d
s
}∥x∥2

◦ q-bit random quantization saving us O(32/q) bits in communication
◦ the error vanishes as x → 0, happens when x is (an estimator of) the gradient.
◦ We can rescaled it to reduce the variance at the cost of some bias.
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• Consider a compression mechanism such that

E[C(x)] = Ax , E∥C(x)− x∥2 ≤ B∥x∥2, 0 < A ≤ 1, B ≥ 0 (281)

• For instance, A = p and B = 1− p for random dropout. Or A = 1 and B = d2

k2 for unbiased
random sparsification.

• Consider the following key step for SGD with compression, i.e. wt+1 = wt − ηC(gt)

f (wt+1) ≤ f (wt) + ⟨wt+1 − wt ,∇f (wt)⟩+
L

2
∥wt+1 − wt∥2

= f (wt)− η⟨C(gt),∇f (wt)⟩+
Lη2

2
∥C(gt)∥2

(282)

• Taking expectation w.r.t. to C and then the randomness of current batch zt conditioning on
previous batches

E[f (wt+1)] ≤ f (wt)− ηA∥∇f (wt)∥2 +
Lη2

2
E∥C(gt)∥2 (283)

OPT4DL, A. Hashemi, Purdue ECE



Compression and Convergence (Cont’d)
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• Note that

E∥C(gt)∥2 = E∥C(gt)± gt∥2 = E∥C(gt)− gt∥2 + E∥gt∥2 + E[⟨C(gt)− gt , gt⟩] (284)

• First term on RHS is bounded by E∥C(gt)− gt∥2 ≤ BE∥gt∥2

• Third term on RHS can be handled as follows

E[⟨C(gt)− gt , gt⟩] = E[⟨C(gt)− gt ± Agt , gt⟩] = E[⟨(1− A)gt , gt⟩] = (1− A)E∥gt∥2 (285)

assuming C is independent of zt and using E[C(gt)] = Agt .

• Also recall using the SFO assumption E∥gt∥2 ≤ σ2 + ∥∇f (wt)∥2

• All in yields

E[f (wt+1)] ≤ f (wt)− η
(
A− Lη

2
(B + 2− A)

)
∥∇f (wt)∥2 +

Lη2

2
(B + 2− A)σ2 (286)
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Compression and Convergence (Cont’d)
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• The rest is similar to SGD’s analysis and we can obtain

1
T

T∑
t=1

Ez1:T ∥∇f (wt)∥2 ≤
f (w1)− f ∗

Tη
(
A− Lη

2 P
) +

Lησ2P

2A− LηP
, P := (B + 2− A) (287)

• We now require a smaller learning rate for the result η < 2A
LP (vs. η < 2/L)

• There is effectively a new variance: σ̃2 = σ2(B + 2− A) ≥ σ2. For instance:
◦ for random dropout where A = p and B = 1− p, σ̃2 = (3− 2ρ)σ2

◦ For unbiased random sparsification where A = 1 and B = d2

k2 , σ̃2 = σ2(1 + d2

k2 )

• The result reduces to SGD with no compression when A = 1 and B = 0.

• We can show E∥∇f (ŵ)∥2 ≃ O(A−1/
√
T ) when A < 1 and B < 1 (biased operators) while

E∥∇f (ŵ)∥2 ≃ O(B/
√
T ) when A = 1 and B > 1 (unbiased operators).

• Still converges, but now the dominant term is much worse as A−1 and B are very large (e.g.
O( dk ) and O( d

2

k2 )). Also, generally bias seems helpful
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• Let us focus on a biased compression operator such that E∥C(x)− x∥2 ≤ (1− δ)E∥x∥2. This is
called a contraction compression.
◦ δ → 1 low compression (or a good operator)
◦ δ → 0 high compression (or a bad operator)

• One way to interpret compression is that we are throwing out part of the information. How
about we save it in memory, augment it with the next message, and the communicate that?

• In some sense, instead of throwing information out, we are communicating them with delay.

• And if we communicate long enough, everything more or less will be sent.

• Mathematically,

communicate C(xt + et) instead of C(xt), et+1 = (xt + et)− C(xt + et) (288)

• et+1 is the compression error, xt + et is the uncompressed message, and C(xt + et) is what we
send out.
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• Initialize w1 and e1 = 0

• For t = 1, . . . ,T do
◦ Sample a batch zt ∼ pz

◦ Form the stochastic gradient gt = ∇ℓ(wt , zt)

◦ Compress and send mt = C(gt + et)

◦ Update the error et+1 = (gt + et)− C(gt + et) and store it
◦ Update the parameters wt+1 = wt − ηmt

Theorem
Assume f is L-smooth and we have access to an SFO and that z1, . . . , zT are statistically
independent. Then, If η = O(1/

√
T ), EF-SGD achieves E∥∇f (ŵ)∥2 ≤ O( 1

δT + 1√
T
).

• better dependence on the compression parameter as it appears only in the higher order term
(as opposed to O( 1

δ
√
T
) for SGD without EF).
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• Recall for decentralized SGD we considered how the average model (a virtual sequence
unknown to the agents) performs. Here we also consider an idealized sequence with no
compression error

• Define w̃t = wt − ηet .

• Effectively removing the compression error from EF-SGD’s iterates wt+1 = wt − ηC(gt + et)

• Intuitively, w̃t should resemble SGD’s update with no compression, i.e.

w̃t+1 = w̃t − ηgt (289)

• Indeed that is the case:

w̃t+1 = wt+1 − ηet+1 = wt − ηC(gt + et)− ηet+1 = (wt − ηet)− ηgt = w̃t − ηgt (290)

where we used EF-SGD’s update and et+1 = (gt + et)− C(gt + et)
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Proof Sketch (Cont’d)
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• We then use our potential-based analysis as before.

• We consider and analyze the evolution of the compression error et+1 = (gt + et)− C(gt + et)

and obtain
E∥et∥2 ≤ κ(δ)E∥et−1∥2 + other terms (291)

for some 0 < κ(δ) < 1 depending only on the compression parameter

• We then define a potential function

Φt = E[f (w̃t)]− f ∗ + CeE∥et∥2 (292)

• Study the evolution of potential by summing over its consecutive differences

• When κ(δ) < 1 we can find a good constant Ce to ensure convergence.
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• Distributed
learning in general leads to performance improvement

• However, information sharing opens the door to
the possibility of sabotaging the security of personal data

• Ensuring data integrity (a
context, hence an example of contextually constrained DL)
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• Anonymization such as removing personally identifiers from data does not work due to linkage
attacks (matching anonymized and non-anonymized data)

• Example: Netflix prize
• We need randomized safeguarding mechanisms
• Idea is to learn something useful about a population while not memorizing/learning something

specific about an individual agent
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• Assume a survey is being conducted to determine the fraction of professors playing video games

• Assume professors playing video games is considered lame, which of course is not

• So, we want to learn something useful (the fraction) about a population (professors) while not
memorizing/learning something specific about an individual agent (whether “professor
Hashemi” plays a game)

• Let xi ∈ {1, 0} denote the truth about whether professor i plays games or not. And our goal is
to estimate x̄ = 1

n

∑n
i=1 xi for a population of n professors (e.g., n = 120 in Purdue ECE).

• Assume professor i will reveal an answer yi ∈ {1, 0} indicating whether they play games or not.
• Case 1: yi = xi

◦ We can accurately estimate x̄ by finding the average of yi ’s
◦ No privacy

• Case 2: yi = xi with probability 1/2 and yi = 1− xi with probability 1/2
◦ yi ’s are useless and we cannot estimate x̄ at all.
◦ perfect privacy
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• How about interpolating these two cases?
• yi = xi with probability 1/2 + ε and yi = 1 with probability 1/2− ε where 0 ≤ ε ≤ 0.5
• So on average when ε > 0, it is more likely to be truthful than lying. And in some sense

provides plausible deniability.
• Let us calculate the mean of yi

E[yi ] = xi (0.5 + ε) + (1− xi )(0.5− ε) = 2εxi + (0.5− ε) (293)

meaning yi is a biased estimator of xi . Meaning, average of yi may no be a good estimator of x̄ .
• After receiving the answers, we can form an unbiased estimator

ŷi =
yi + ε− 0.5

2ε
, ȳ =

1
n

n∑
i=1

ŷi , E[ȳ ] = x̄ , E|ȳ − x̄ | = O(0.5− ε

ε
√
n

) (294)

• Learning something useful (x̄) with good accuracy about a population while not
memorizing/learning something specific (xi ’s) about an individual
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• Assume a professor retires and the department hires a new assistant professor instead.
• Under Case 1 (yi = xi ), our survey is highly sensitive to this change whereas under case 2

(yi = xi with probability 1/2 and yi = 1− xi with probability 1/2) our survey is completely
insensitive.

• Like before noise tends to reduce the sensitivity of our method and in this case improve privacy.
• this idea gives rise to Differential privacy, ensuring

P( survey ( department ∪ retired ) ∈ outcome set )

≈ P( survey ( department ∪ new hire) ∈ outcome set )
(295)
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Neighboring datasets
Two datasets D ∈ Dc and D′ ∈ Dc are said to be neighboring if they differ in exactly one
sample, and we denote this by |D − D′| = 1.

(ε, δ)-DP
Given a collection of datasets Dc , a randomized mechanism M : Dc −→ Y is said to be
(ε, δ)-DP, if for any two neighboring datasets and all set of outcomes R

P(M(D) ∈ R) ≤ eεP(M(D′) ∈ R) + δ, ε, δ ≥ 0

• When δ = 0, it is commonly known as pure DP. Otherwise, it is known as approximate DP.

• eε is for mathematical convenience. We could have used 1 + ε instead and note 1 + ε ≈ eε

• Symmetric definition despite looking otherwise (note it holds for any two D and D′)
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• Can only be satisfied by randomized mechanism M
• Smaller ε and δ imply stronger privacy guarantees (they control the privacy-accuracy tradeoff)

• The ratio
log

P(M(D) ∈ R)
P(M(D′) ∈ R)

(296)

is called the privacy loss and DP implies that with probability at least 1− δ, the privacy loss is
at most ε

• Typically, ε < 0.1 and δ ≪ 1/n for a problem with n data points to ensure the privacy loss of
each data point is small with high probability

Post Processing Theorem
If M is (ε, δ)-DP, so is its composition with any function h, i.e. f (M(·)).

No matter what others do to the released outcomeM(·), privacy is maintained ifM(·) is a
(ε, δ)-DP.
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• Going back to our example on professors and video games, let D = {x1, . . . , xn} and
D′ = {x ′1, . . . , xn}

• By the Post Processing Theorem, we only need to show our process (i.e. yi = xi with
probability 1/2 + ε and yi = 1 with probability 1/2− ε where 0 ≤ ε ≤ 0.5) is DP.

• Our mechanism is then M(D) = [M1(x1), . . . ,Mn(xn)] where yi =Mi (xi )).

• Let r ∈ {0, 1}n be a possible response profile and assume the responses are statistically
independent

P(M(D) = r)

P(M(D′) = r)
=

∏n
i=1 P(Mi (xi ) = r)

P(M1(x ′1) = r)
∏n

i=2 P(Mi (xi ) = r)
=

P(M1(x1) = r)

P(M1(x ′1) = r)
≤ 0.5 + ε

0.5− ε
≈ e5ε

(297)
for all ε ≤ 0.3. Thus, RR is (5ε, 0)-DP.

• Beyond single bit outcomes?
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Beyond single bit outcomes
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• RR can be thought of as adding the right amount of Bernoulli noise to xi ∈ {1, 0}
• To guarantee DP for broad cases, we can similarly add noise of different kinds to the output.

Laplace Mechanism

Let h : Dc → Rd be a function to Rd . The Laplace mechanism is
M(D) = h(D) + [e1, . . . , ed ] where each ei ∼ Lap(0, b) is an independent variable distributed
according to the Laplace distribution

e ∼ Lap(µ, b) ≡ p(e) ∝ exp(−|e − µ|
b

), E[e] = µ, Var(e) = 2b2 (298)

Gaussian Mechanism

Let h : Dc → Rd be a function to Rd . The Gaussian mechanism is
M(D) = h(D) + [e1, . . . , ed ] where each ei ∼ N (0, σ2) is an independent variable distributed
according to the Gaussian distribution

e ∼ N (µ, σ2) ≡ p(e) ∝ exp(−|e − µ|2

2σ2 ), E[e] = µ, Var(e) = σ2 (299)
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• Consider Laplace mechanism and let us see how that leads to DP

• Note that in this caseM(D) is a vector where each coordinate is distributed according to
Lap(hi (D), b).

• Thus, p(M(D))
p(M(D′)) is simply the ratio of two Laplace distributions with different means

• Simple algebra and the definition of ℓ1 norm, i.e. ∥x∥1 =
∑

i xi shows

p(M(D))
p(M(D′))

≤ exp(
∥h(D)− h(D′)∥1

b
) (300)

implying b ∝ ∥h(D)−h(D′)∥1
ε to ensure (ε, 0)-DP.
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Sensitivity in Gaussian and Laplace Mechanisms (Cont’d)
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• Thus,

b ∝ ∥h(D)− h(D′)∥1
ε

(301)

is adequate to ensure (ε, 0)-DP for the Laplace mechanism.

• A similar calculation shows

σ ∝ ∥h(D)− h(D′)∥2
ε

log
1
δ

(302)

to ensure Gaussian mechanism leads to (ε, δ)-DP

• Thus,
max

D,D′,|D−D′|=1
∥h(D)− h(D′)∥1, max

D,D′,|D−D′|=1
∥h(D)− h(D′)∥2 (303)

are notions of sensitivity: the more sensitive our learning procedure h, the more noise needed to
ensure privacy.

• Implications for DL optimization?
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• Consider our typical learning problem

w∗ = argmin
w

f (w) =
1
n

n∑
i=1

ℓ(w , zi ) (304)

• Goal is to ensure an approximately optimal model ŵ preserves the privacy of data
D = {z1, . . . , zn}.

• We can leverage DP in three different ways
◦ Output perturbation: adding noise to w∗

◦ Objective perturbation: adding noise to f (w)

◦ Gradient Perturbation: leveraging the fact that we use gradient-based methods for DL
optimization and adding noise to gradients gt
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• We hope to simply output ŵ = w∗ + e where e comes from Laplace or Gaussian dist.

• Unfortunately, The optimal solution w∗ can change significantly if a single data point zi is
replaced, particularly when loss has a sharp or degenerate landscape.

• Implication: ∥w∗(D)− w∗(D′)∥ could be unbounded and DP cannot be guaranteed

• Under G -Lipschitzness and convexity of f (w), the regularized problem

fλ(w) := f (w) +
λ∥w∥22

2
=

1
n

n∑
i=1

ℓ(w , zi ) +
λ∥w∥22

2
(305)

will be λ-strongly convex and we can show

∥w∗(D)− w∗(D′)∥2 ≤
2G
λn

(306)

and we can use Gaussian Mechanism

• Two main drawbacks: need convexity and the ability to find the exact solution w∗
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• Instead of injecting noise into w∗, inject it into the regularized problem fλ(w) and solve

min
w

f eλ (w) :=
1
n

n∑
i=1

ℓ(w , zi ) +
λ∥w∥22

2
+ ⟨w , e⟩, e ∼ N (0, σ2I ) (307)

• Similar to output perturbation, for guaranteed DP, wee need to compute the optimal w∗ exactly

• Let us consider the gradient descent update for such loss function

∇f eλ (w) =
1
n

n∑
i=1

∇ℓ(w , zi )+λw+e = ∇f (w)+λw+e, wt+1 = (1−ηλ)wt−η(∇f (wt)+e)

(308)
That is, GD with weight decay where all gradients are perturbed with the same Gaussian noise
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• Perturb sample gradients with noise in each iteration (DP-SGD)

zt ∼ pz , , gt = ∇ℓ(wt , zt), et ∼ N (0, σ2I ), wt+1 = wt − η(gt + et), (309)

• We can achieve DP guarantees if ∥ℓ(wt , zt)∥ is bounded. True if the sample loss is Lipschitz

• In general, we have to resort to clipping

gt = ∇ℓ(wt , zt), ĝC
t = gt min{1, C

∥gt∥
+ κ} (310)

or normalization
gt = ∇ℓ(wt , zt), ĝN

t =
Cgt

∥gt∥+ κ
(311)

• Both method lead to biased update vectors.

• Can be extended to distributed learning paradigms when each gt is communicated by a
different agent.
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• Differential Privacy: learn something useful
about a population while not memorizing/learning
something specific about an individual agent

• Noise-injection to Reduce
sensitivity of our model to individual data points

• A natural trade-off between accuracy and privacy

• Is it always possible to learn something useful
about a population while not memorizing/learning
something specific about an individual agent?

• Role of data distribution:
Long tailed vs Non-Long-Tail Distribution

• there are many small-frequency events (or
values) that occur with relatively low probability
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• A long-tail distribution
is one where a large portion of the total
probability mass is concentrated in the tail, which
means there are many small-frequency events (or
values) that occur with relatively low probability,
but the tail of the distribution extends far out.

• Mathematically, the density follows Zipf’s law

p(x) ∝ x−s (312)

• In light-tail distribution such as Gaussian
p(x) ∝ exp(−x2) the tail drops off much more
quickly: Beyond a certain point, the probability of
observing values far from the mean becomes extremely small.
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• Long tail data points are atypical:
they belong to subpopulations of size O(1/n)

• If the
model hopes to learn these subpopulations and
generalize, it needs to memorize these samples

• Two questions arise:
first what do we mean by memorization exactly?
and secondly, are all atypical examples useful?

• Let us first
answer the latter: No! atypical examples could
include both “hard” examples as well as noisy
(mislabeled, outliers, duplicated, etc.) examples
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• Memorization means model relies on specific training examples rather than learning general
patterns applicable to unseen data

Definition
Let A a randomized algorithm (Such as SGD) applied to a training set S to learn a model hwS
(e.g. a ResNet classifier) parameterized by w . Then, the memorization score for each data
point is defined as

mem(A,S , zi ) = P[hwS (xi ) = yi ]− P[hwS\i (xi ) = yi ] (313)

• measures the sensitivity of the model’s predictions to the removal of individual data points
from the training set.

• If removing a single example significantly alters the model’s prediction for that example, the
model is said to have memorized that example. Conversely, if the model’s performance remains
largely unchanged, it is considered more stable and less reliant on memorization.
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• Memorization Score for various data points from Class bobsled in ImageNet data set

• Low memorization score corresponds to typical and easy samples

• High memorization score corresponds to atypical (hard and also noisy) samples
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Theorem
Let e(A, hw , pl) denote the expected generalization error of our model hw trained by A for a
long tailed distribution pl . Let ebest(hw , pl) denote the best achievable generalization error by
any algorithm. Let eS(A, 1) denote the number of examples that appear once (i.e. freqi = 1)
in the dataset S and are mislabeled by our model hw trained by A. Then,

e(A, hw , pl) ≥ ebest(h
w , pl) + C × eS(A, 1) (314)

And crucially
eS(A, 1) =

∑
i∈S; freqi=1

P[hwS\i (xi ) ̸= yi ]−mem(A,S , zi ) (315)

theorem implies to achieve the best performance, the model has to memorize atypical examples
since eS(A, 1) goes done as memorization goes up.
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Removal Memorized Samples
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• When removing samples with memorization score beyond a set threshold (e.g., 0.5) there is a
significant drop in model’s performance compared to random removal.

• Figure also demonstrates the long-tailed nature of data: more than 50% of samples have a
memorization score below 0.1.
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Memorization and Differential Privacy
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• Recall, memorization score quantifies the sensitivity of the model’s predictions to the removal
of individual data points from the training set.

• Given the central role of sensitivity in the definition of both memorization and differential
privacy, a natural question is about their relations

Theorem
Let A be a (ε, δ)-differentially private algorithm. Then with probability at least 1− δ

mem(A,S , zi ) ≤ 1− eϵ, ∀i ∈ S (316)

• The theorem states that DP implies low memorization tendency (other direction?)

• As the privacy parameters go down, with increasing probability, eϵ → 1 and the memorization
score goes down as well.

• This again highlights the privacy-accuracy tradeoff: In long tailed data distribution where
memorization is essential, strong DP guarantees could hurt performance.
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Input Loss Curvature and Memorization
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• Recall, memorization score quantifies the sensitivity of the model’s predictions to the removal
of individual data points from the training set.

• The elegant definition of memorization is hard to compute and as mentioned it does not
distinguish between truly hard examples and the mislabeled ones (no need to generalize well on
a noisy sample).

• Therefore, there is a need for computationally efficient proxies that can also make this
important distinction

• Our main tool to train a model is through minimizing the training loss. Thus, one could think
of characterizing sensitivity by looking at loss ℓ(hwS , zi ) and its variation with respect to zi

• Formally: Curvw (zi ,S) = tr(Hi ) = tr(∇2
zi ℓ(h

w
S , zi )) (317)

Theorem
Under certain assumptions we can show mem(A,S , zi ) ≤ ACurvw (zi ,S) + B
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Input Loss Curvature and Memorization (Cont’d)
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• curvature captures the local structure of the loss landscape:
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Input Loss Curvature and Memorization (Cont’d)
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• In practice, accumulated curvature
∑T

t=1 Curvwt (zi ,S) over the training process leads to
higher correlation with memorization

• Curvature can be approximated efficiently using using Hutchinson’s trace estimator and
zeroth-order gradient estimation

Curvw (zi ,S)
2 ∝ 1

M

M∑
j=1

∥∇zi ℓ(h
w
S , zi + ej)−∇zi ℓ(h

w
S , zi )∥2, ej ∼ pe (318)

• Viewing curvature as second-order sensitivity, we can use first-order (input gradient
∥∇zi ℓ(h

w
S , zi )∥) and zeroth-order (input loss) and their cumulative versions for more efficient

memorization proxies, leading to broad family of differential input sensitivity (DIS) proxies

• One potential benefit of DIS is the ease to study memorization in unsupervised and generative
models (active area of research)
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Distinguishing Noisy and Hard Examples
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• Both typical and atypical samples exhibit a low final loss. Noisy samples maintain a relatively
high final loss.

• The average loss for typical samples remains low, whereas it is high for both atypical and noisy
samples

• Could lead to the following criterion which is large for truly hard samples

GoodMem = CumulativeDIS− FinalDIS (319)

OPT4DL, A. Hashemi, Purdue ECE



Robustness



Motivation
Machine
Intelligence
Networked
Data
Science

&

• Our DL models will be used in diverse settings where the conditions of the training process are
not necessarily met

• For instance, they may need to withstand changes in the test data compared to training data
◦ Change due to bad actors
◦ change due to out-of-domain (OOD) Samples

• Thus, we want to induce robustness or resiliency into our training process
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Robustness in Supervised Learning
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• Main idea: Reduce sensitivity with respect to changes or perturbations in the data

min
w

max
e:∥e∥≤ρ

1
n

n∑
i=1

ℓ(w , zi + e) (320)
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Adversarial Training
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• During the training process, perturb the data according to projected gradient descent:

z̃t = Proj
(
zt + η̃∇zℓ(wt , zt)

)
(321)

• Note: the gradient is w.r.t. the data not parameter w

• the projection aims to ensure to perturbation is not too large and remains bounded

• Then, use the perturbed data z̃t (as opposed to the original data zt) to update the model

gt = ∇ℓ(wt , z̃t), wt+1 = wt − ηgt (322)

• Effectively trying to estimate the worst perturbation/attach for each data point
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Input Gradient Regularization
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• Instead of iteratively solving the max, can we find a closed-form expression for the worst-case
perturbation?

• Let us write the first-order Taylor approximation around z

ℓ(w , z + e) ≈ ℓ(w , z) + ⟨∇ℓ(w , z), z + e − z⟩ (323)

which will be an affine function of e.
• It turns out the problem below has a closed form solution

arg max
e:∥e∥≤ρ

ℓ(w , z) + ⟨∇zℓ(w , z), e⟩ = ρ
∇zℓ(w , z)

∥∇zℓ(w , z)∥
(324)

Leading to the Input gradient regularized robust formulation

min
w

1
n

n∑
i=1

ℓ(w , zi ) + ρ∥∇zℓ(w , zi )∥ (325)

• Note: Idea similar to sharpness-aware minimization, but there we regularized with gradient
w.r.t. w instead
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Less Pessimistic Solutions
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• Previous approaches based on estimating the worst-cased perturbation could be pessimistic

• A way around is to use random perturbations instead

min
w

1
n

n∑
i=1

Ee∼pe [ℓ(w , zi + e)] (326)

resembling Gaussian Smoothing (convolution with the PDF of a nice distribution)

• Assume the noise is zero mean and E[ee⊤] = 2ρIp. Let us write the second-order Taylor
approximation around z

ℓ(w , z + e) ≈ ℓ(w , z) + ⟨∇zℓ(w , z), e⟩+ 1
2
e⊤∇2

zℓ(w , z)e (327)

Noting e⊤∇2
zℓ(w , z)e = Trace(e⊤∇2

zℓ(w , z)e) and after using the linearity of trace and
expectation leads to

min
w

1
n

n∑
i=1

ℓ(w , zi ) + ρTrace(∇2
zℓ(w , zi )) (328)

i.e., an input curvature regularization method.
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Distributionally Robust Optimization (DRO)
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• To induce robustness, the previous approaches
were based on perturbation of the input data.
Intuitively, they aimed to guess the data distribution
during inference. An alternative approach is to directly
robustify the changes in the input data distribution:

P(z = zi ) = 1/n → P(z = zi ) = pi (329)

where D(p∥1/n) ≤ ρ.

• Equivalently, if PD
ρ = {p : D(p∥1/n) ≤ ρ} solve the

problem
min
w

max
p∈PD

ρ

Ez∼p[ℓ(w , z)]
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Example: KL-based DRO
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• Assume D(p∥1/n) is the KL divergence:

D(p∥1/n) =
n∑

i=1

pi log
pi

1/n
(330)

• After certain steps (crucially using the duality theory), our DRO problem will reduce to

min
w

ρ−1 log
(1
n

n∑
i=1

exp(ρℓ(w , zi ))
)

(331)

• Easy to check when ρ→ 0, the objective reduces to 1
n

∑n
i=1 ℓ(w , zi ) (non-robust) while when

ρ→∞ it reduces to maxi ℓ(w , zi ) (pessimistic robustness)

• Since log is a monotone function, the problem is equivalent to

min
w

1
n

n∑
i=1

exp(ρℓ(w , zi )) (332)

i.e., a new ERM with sample loss ℓ̃(w , zi ) = exp(ρℓ(w , zi )).
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Gradient-Based Solution
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• Consider the loss prior to removal of log

ρ−1 log
(1
n

n∑
i=1

exp(ρℓ(w , zi ))
)

(333)

• The gradient can be calculated as

1
n

∑n
i=1 exp(ρℓ(w , zi ))∇ℓ(w , zi )
1
n

∑n
i=1 exp(ρℓ(w , zi ))

=
n∑

i=1

αρ
i (w)∇ℓ(w , zi ), αρ

i (w) =
exp(ρℓ(w , zi ))∑n
j=1 exp(ρℓ(w , zj))

(334)
i.e., a weighted average of sample gradients where the weights depend on the parameter

• Thus, we can intuitively (but not literally) think of the loss as a weighted ERM where the
weights for each sample depend on the parameter w : P(z = zi ) = αρ

i (w)

• The weights are designed to promote samples with higher loss, thereby inducing robustness
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• We talked about numerous learning setups where

min
w

Ez [ℓ(w , z)] + λh(w) (335)

where h(w) was some regularization term and λ ≥ 0 a regularization parameter

• How to determine λ? What if we want a certain condition satisfied in a very strong sense?

• These questions lead to a general Constrained Learning setup

min
w

Ez [ℓ(w , z)] s.t. h(w) ≤ τ (336)

• The constraint h(w) can itself be a stochastic function

h(w) = Ez̃ [ℓ̃(w , z̃)] (337)

• We can set τ = 0 without loss of generality by redefining h(w)← h(w)− τ
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Motivation (Cont’d)
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• Multi-class Neyman-Pearson classification: the loss of a prioritized class is minimized while the
rest ones are below a certain threshold denoted by

min
w

f1(w)

s.t. fi (w) ≤ τi , i = 2, . . . ,K
(338)

where fi (w) = Ezi [ℓ(w , zi )] is the loss function of each class, and here class 1 is set as the
prioritized one.
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Motivation (Cont’d)
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• Physics-Informed Neural Networks (PINNs): learning a DL model that approximates the
solution to a partial differential equation (PDE).

min
w

1
n

n∑
i=1

ℓ(yi ,Mw (xi ))

s.t. E(x,t)∼Dphysics

[
∥N [Mw ](x , t)∥2

]
= 0

(339)

where the distribution Dphysics represents a set of points sampled from the domain where the
physical constraints (e.g., differential equations) must be enforced and the operator N [Mw ]

represents the governing laws of the system, typically through a PDE.
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Bringing the Constraint into the Objective
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• Consider the problem
min
w

Ez [ℓ(w , z)] s.t. h(w) ≤ 0 (340)

• If we define the indicator function of the constraint as

I{h(w)} =

{
0, h(w) ≤ 0

∞, h(w) > 0
(341)

we can equivalently solve
min
w

Ez [ℓ(w , z)] + I{h(w)} (342)

• The indicator function shows our amount of displeasure regarding the violation of constraint.
Maximum displeasure leads to an equivalent problem, but not easily approachable. Other
choices such as linear, quadratic, or the combination of the two lead to easier approaches

• This idea leads to penalty-based and Lagrangian-based formulations.
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Weaker Displeasure Notations
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• Penalty-Based method

min
w

Ez [ℓ(w , z)] +
ρ

2
([h(w)]+)

2, ρ ≥ 0 (343)

where [·]+ = max(·, 0)
• Lagrangian (linear penalty) method

min
w

Ez [ℓ(w , z)] + λh(w), λ ≥ 0 (344)

• Augmented Lagrangian method

min
w

Ez [ℓ(w , z)] + λh(w) +
ρ

2
([h(w)]+)

2 ≡ min
w

Ez [ℓ(w , z)] +
ρ

2

([
h(w) +

λ

ρ

]
+

)2

(345)
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• The function L(w , λ) = Ez [ℓ(w , z)] + λh(w) is called the Lagrangian associated with the
original constrained learning task

• Note Lagrangian is linear in λ, thus, minimizing it w.r.t. w leads to a concave function which
we call the Lagrange dual function

g(λ) = min
w
L(w , λ) = min

w

(
Ez [ℓ(w , z)] + λh(w)

)
(346)
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Lagrangian (Cont’d)
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• Lagrange dual function provides a lower bound on the optimal value of the original problem for
each λ. For any feasible w̃

g(λ) = min
w
L(w , λ) ≤ L(w̃ , λ) = Ez [ℓ(w̃ , z)] + λh(w̃) ≤ Ez [ℓ(w̃ , z)] (347)

where we used h(w̃) ≤ 0 for any feasible solution w̃ including the optimal one w∗.

• A natural question is: What is the best lower bound that can be obtained from the Lagrange
dual function? This leads to the Lagrange dual problem

max
λ≥0

g(λ) s.t. ≡ max
λ≥0

min
w

Ez [ℓ(w , z)] + λh(w) (348)

• Under certain conditions (Slater’s condition and strong duality), one can change the order of
max and min and obtain an equivalent problem (to both dual and our original problem)

max
λ≥0

min
w

Ez [ℓ(w , z)] + λh(w) ≡ min
w

max
λ≥0

Ez [ℓ(w , z)] + λh(w) (349)
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Solving the Dual Problem via GD
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• Let L(w , λ) denote the (augmented) Lagrangian function

• We can try to solve the minmax (or maxmin) problem iteratively

• For t = 1, . . .T
◦ wt+1 = minw L(w , λt)

◦ λt+1 = maxλ≥0 L(wt+1, λ)

• The updates (after some approximations and under certain assumptions) can be interpreted as
gradient descent on w and gradient ascent on λ:
◦ wt+1 = wt − η∇wL(wt , λt)

◦ λt+1 = [λt + η∇λL(wt+1, λt)]+
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Switching Gradient Method (SGM)
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• Consider our original problem

min
w

f (w) s.t. h(w) ≤ 0 (350)

and assume we are working with an iterative method.

• Note that the constraint need not be considered for an iterate wt as long as h(wt) ≤ ϵ. And we
can just use GD or a similar method wt+1 = wt − η∇f (wt)

• On the other hand, if h(wt) > ϵ, we may want to prioritize the constraint over the objective by
performing the following update as needed

wt+1 = wt − η∇h(wt) (351)

• Effectively, depending on the amount of violation, we switch the gradient in GD
• For t = 1, . . . ,T

◦ if h(wt) ≤ ϵ perform wt+1 = wt − η∇f (wt)

◦ if h(wt) > ϵ perform wt+1 = wt − η∇h(wt)
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Switching Gradient Method (Cont’d)
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• The method can be thought of as a kind of SGD for the dual problem.

• Consider minw maxλ≥0 f (w) + λh(w) and let λ∗ ≥ 0 be the maximizer. Then,

min
w

f (w) + λ∗h(w) ≡ min
w

1
1 + λ∗ f (w) +

λ∗

1 + λ∗ h(w) (352)

assuming λ∗ is constant, for which the GD update is

wt+1 = wt − η

(
1

1 + λ∗∇f (wt) +
λ∗

1 + λ∗∇h(wt)

)
= wt − ηE[∇ℓ̃(wt , z)] (353)

where z ∈ {1, 2}, P(z = 1) = 1
1+λ∗ , and P(z = 2) = λ∗

1+λ∗ , implying

∇ℓ̃(wt , z) =

{
∇f (wt) w .p. 1

1+λ∗

∇h(wt) w .p. λ∗

1+λ∗

(354)

OPT4DL, A. Hashemi, Purdue ECE



Second-Order Guarantees



Higher Quality Solutions
Machine
Intelligence
Networked
Data
Science

&

• Consider our training problem
min
w

f (w) := E[ℓ(w , z)] (355)

• We showed SGD with update wt+1 = wt − ηgt satisfies E∥∇f (ŵ)∥2 ≤ ϵ using T = Ω(ϵ−2)

iterations

• This is called a first-order solution and in principle can be a local minimum, local maximum, or
a saddle point

• Example: f1(w) = 1
3w

3 − w
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Higher-order Solutions (Cont’d)
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• Example: f2(w) = 1
3w

3

• Example: f3(w) = 1
4w

4

• Example: f4(w) = 1
2 (w

2 − 1)2
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• Example: f (x , y) = x2 − y2

Definition
An (ϵ1, ϵ2)-accurate second order stationary solution for f is any ŵ such that

∥∇f (ŵ)∥2 ≤ ϵ1, λmin(∇2f (ŵ)) ≥ −ϵ2 (356)
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• The definition excludes local maximum and simple/strict saddle points (detectable by looking
at Hessian).

• It does not however exclude higher order saddle points (undetectable by looking at Hessian)

• Examples: x2 + y3 (left) and monkey saddle, i.e. x3 − 3xy2 (right)
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• Many ML problems only include local/global minima and simple saddle points
• Example: Matrix Factorization

P∗,Q∗ = argmin
U,V
∥R − PQ⊤∥2F (357)

• Permutation of columns of P∗ and Q∗ leads to the same solution
• Similar idea applies to DL models and permutations weight matrices
• These exponentially many global minima are separated by exponentially many simple saddle

points
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Exponentially Many Saddles and Minima
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• Consider the function h(x) = (1− x2)2 and from it construct h(x , y) = f (x) + f (y)

◦ 4 minima and 4 simple saddle points
◦ h(x , y , z) = f (x) + f (y) + f (z) will have 8 minima and 8 simple saddle points
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Finding 2nd order Solutions
Machine
Intelligence
Networked
Data
Science

&

• Recall to find a first-order solution
◦ We required accessing the gradient or a good approximation of that
◦ We imposed smoothness, i.e., Lipschitzness of gradient
◦ gradient is a first-order quantity

• Thus, intuitively, we expect to need the following
◦ We require accessing the Hessian or a good approximation of that
◦ We impose 2nd-order smoothness, i.e., smoothness of gradient, or Lipschitzness of Hessian
◦ Hessian is a second-order quantity

• We will indeed require Lipschitzness of Hessian. However, we will discuss two methods one
requiring Hessian and one requiring only (stochastic gradient)

• Hessian information will be useful to detect saddles and avoid them. Gradient noise injection
could help avoid saddle points by taking advantage of their instability.

• In both cases, by avoid we mean find a direction to decrease the function value.

OPT4DL, A. Hashemi, Purdue ECE



Second-Order Methods: Newton Algorithm
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• Newton method is a celebrated algorithm for calculating zeros of functions iteratively:

f (x∗) = 0 xt+1 = xt −
f (xt)

f ′(xt)
(358)

Implication for optimization: finding zeros of gradient: ∇f (w∗) = 0

wt+1 = wt − H−1
t ∇f (wt), Ht = ∇2f (wt) (359)

• Newton Variations
◦ Damped Newton: H−1

t → ηtH
−1
t

◦ Levenberg–Marquardt Regularization (LMR) H−1
t → (η−1

t Id + Ht)
−1 ≈ ηt(Id − ηtHt)

• When H−1
t → ηId we obtain gradient descent.

• Effectively improves the local landscape conditions by leveraging the preconditioning matrix
Ct = H−1

t
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Newton, GD, and Majorization Minimization
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• Recall, we previously discussed GD as an example of MM for L-smooth functions when η ≤ 1/L

wt+1 = argmin
w

f (wt) + ⟨∇f (wt),w − wt⟩+
1
2η
∥w − wt∥2 (360)

• We can easily show Newton update is equivalent to minimizing the 2nd-order Taylor
approximation at wt

wt+1 = argmin
w

f (wt) + ⟨∇f (wt),w − wt⟩+
1
2
(w − wt)

⊤Ht(w − wt) (361)

• Note (w − wt)
⊤Ht(w − wt) ≤ L∥w − wt∥2 meaning Newton is not an instance of MM.

• Intuitively, Newton is designed to solve ∇f (w) = 0 not ∇f (w) = 0 such that ∇2f (w) ⪰ 0

• For this reason, Newton may not help us to avoid saddles effectively. But a variation of it will.

• Idea is to form an upper-bound and minimize that iteratively by assuming and leveraging
Lipschitzness of Hessian as opposed to Lipschitzness of gradient.
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ρ-Lipschitz Hessian
Machine
Intelligence
Networked
Data
Science

&

Definition

A function f is ρ second-order smooth if ∥∇2f (w1)−∇2f (w2)∥2 ≤ ρ∥w1 − w2∥ for all
w1,wt ∈ Rd

• It turns out this is equivalent to

f (w1) ≤ f (w2) + ⟨∇f (w2),w1 −w2⟩+
1
2
(w1 −w2)

⊤∇2f (w2)(w1 −w2) +
ρ

6
∥w1 −w2∥3 (362)

∥∇f (w1)−∇f (w2)−∇2f (w2)(w1 − w2)∥ ≤
ρ

2
∥w2 − w1∥2 (363)

• Function has local cubic bound and the gradient is ρ-smooth (it has quadratic bound)

• Cubic Regularization of Newton Method (CRNM):

wt+1 = argmin
w

f (wt) + ⟨∇f (wt),w − wt⟩+
1
2
(w − wt)

⊤Ht(w − wt)+
ρ

6
∥w − wt∥3 (364)

• Interestingly, the update is equivalent to a convex optimization problem when d ≥ 2
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• Under ρ-Lipschitz Hessian Hessian, the method is MM thus, we continually reduce the function
value

• Consider the spectral decomposition of Hessian Ht =
∑d

i=1 λiuiu
⊤
i

• So the update can be written equivalently as

wt+1 = argmin
w

f (wt) + ⟨∇f (wt),w − wt⟩+
1
2

d∑
i=1

λi

(
u⊤i (w − wt)

)2

+
ρ

6
∥w − wt∥3 (365)

◦ We are penalizing directions ui with positive λi as they are the direction of increase.
◦ We are taking advantage of directions ui with negative λi as they are the direction of decrease.

Theorem

CRNM can find an (ϵ, 2
√
ρϵ)-second order solution in T = Ω(

√
ρ(f (w1)−f ∗)

ϵ0.75 ).
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• If there exists a direction with sufficiently large (and negative) eigen value such that
λ < −√ρϵ, we can reduce the function value

f (wt+1)− f (wt) ≤ −
2λ3

3ρ2 compare with f (wt+1)− f (wt) ≤ −
2∥∇f (wt)∥2

2L
for GD

(366)

• Otherwise, there are two cases. First, if ∥wt+1 − wt∥ ≤ ϵρ−1 then ∥∇f (wt+1)∥2 ≤ ϵ meaning
both conditions of approximate 2nd order definition are met and we find a solution.

• Secondly, if ∥wt+1 − wt∥ > ϵρ−1, we can still make progress and reduce the function value

f (wt+1)− f (wt)<−
ϵ0.75

6
√
ρ

(367)

• By contradiction we then show a solution is found after precisely T = Ω(
√
ρ(f (w1)−f ∗)

ϵ0.75 )

iterations.
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• Consider f (x , y) = 0.5(x2 − y2).
If we initialize at (0, 0) GD will not move.

• However, the saddle point is instable and if we
inject random noise in the gradient, GD will eventually escape it

xt+1 = −η
t∑

τ=1

(1−η)t−τeτ (x), yt+1 = −η
t∑

τ=1

(1+η)t−τeτ (y)

(368)
where eτ (x) and eτ (y) are the random noise
added to the x and y component of the gradient, respectively.

• Remark: SGD has baked in noise, but explicit injection is needed
in general.

• Remark: With random initialization, the chance of starting at a
bad initialization (saddles and local maxima) is very low
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• In each iteration run

wt+1 = wt − η∇f (wt) + ηet , et ∼ S(0, 1) or et ∼ B(0, 1) or et ∼ N (0, I ) (369)

• Essentially, we use random exploration to find a direction of decrease, as opposed to using
second order information (Hessian)

• Related to Langevin Dynamics

Theorem

Assuming L-first order and ρ-second order smoothness, perturbed GD can find an (ϵ,
√
ϵ)

solution with high probability when T = Ω(d2ϵ−1).

• Recall CRNM needs T = Ω(ϵ−0.75) deterministically and w/o requiring L-first order smoothness

• The issue is adding noise in every single iteration, even if we are not near a saddle (seems
unnecessary)
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Better Perturbed GD
Machine
Intelligence
Networked
Data
Science

&

• Only add noise when needed (near a first-order solution that has a low gradient norm)

• for any t if ∥∇f (wt)∥ ≤ κ

◦ wt ← wt + e with et ∼ B(0, r) with r = O(ϵ)

• Do GD for T̃ iterations

Theorem
Assuming L-first order and ρ-second order smoothness, better perturbed GD can find an
(ϵ,
√
ϵ) solution with high probability when T = Ω̃(ϵ−1).

• Finding 2nd-order solutions is almost as easy as finding first-order solutions (when ignoring log
terms that may depend on dimensions)
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• Recall our canonical training task

min
w

fp(w) := Ez∼p[ℓ(w , z)] (370)

for which we have discussed several efficient training methods, e.g., SGD and its variations

• Notably, we have discussed several upper bounds on the performance of these methods

• Does not tell us the fundamental limit of performance: best achievable by any method using
stochastic gradients

• We will discuss tools to derive such results for stochastic convex optimization.

• Setup:
◦ p is unknown, ℓ is convex and G -Lipschitz for all z
◦ We observe stochastic gradients g1, . . . , gT

◦ We produce ŵ as a function of g1, . . . , gT
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Minimax Optimality
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• Recall, for SGD, from stochastic gradients g1, . . . , gT generated according to samples
z1, . . . , zT ∼ p we upper bounded

Ez1,...,zT [fp(w)−min
w

fp(w)] ≡ EPT [fp(w)−min
w

fp(w)] ≤ ∥w1 − w∗∥(G + σ)√
T

(371)

where PT is the joint distribution of observations g1, . . . , gT
• How good is the suboptimality gap EPT [fp(w)−minw fp(w)]? depends on p which is unknown.
• The above notion of “risk” cannot be minimized since it depends on the unknown parameter p.

Thus, to talk about the optimality, in general additional criteria are required
• One such criteria is minimax risk: achieves the smallest maximum risk among all alternative

distributions belonging to some distribution set D
• Let PT be the joint distribution of observations g1, . . . , gT :

RD
T (w) = max

p∈D
EPT [fp(w)−min

w
fp(w)], wopt = argmin

w
RD

T (w) (372)
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• Our main strategy will involve lower bounding the risk step-by-step and constructing a hard
example

• We reduce the optimization for this hard example to a statistical decision making (hypothesis
test) problem

• We use tools from information theory (e.g. Le Cam’s, Fano’s, and Assoud’s methods) to study
the probability of failing the test

• We assume w.l.o.g. D is a finite set D = {p1, p−1} and let π be a distribution over D such that
π(p1) = π(p−1) = 0.5. Then, since max is larger than average

RD
T (w) = max

pi∈D
EPT

i
[fpi (w)−min

w
fpi (w)] ≥ Epi∼π

[
EPT

i
[fpi (w)−min

w
fpi (w)]

]
= π(p1)EPT

1
[fp1(w)−min

w
fp1(w)] + π(p−1)EPT

−1
[fp−1(w)−min

w
fp−1(w)]

(373)

where PT
i is the joint distribution of observations (stochastic gradients) when z ∼ pi
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• We will construct a test based on the optimization performance fpi (w)−minw fpi (w)

• In hypothesis testing, the goal is to determine which of the two alternative is correct based on
a number of observations.

• Nature chooses a distribution pi ∈ D and as a result a loss function fpi (w) (in our case
D = {p1, p−1})

• Based on this choice, we observe stochastic gradients g1, . . . , gT for fpi (w) with joint
distribution PT

i

• Goal is to correctly identify the choice made by nature, i.e., from g1, . . . , gT decide which
distribution/loss was chosen.

• Typically, the probability of making mistake is lower bounded as the distributions, despite being
different, are similar, so the observations could lead to a mistake

• The implication for us will be a lower bound on the convergence rate
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• Let ℓ(w , z) = G |w − zD| for z ∈ {1,−1}. Note the function is convex and G -Lipschitz.
Consider two binary distribution on z

p1(z = i) =
1 + iδ

2
, p−1(z = i) =

1− iδ

2
, i ∈ {1,−1} (374)

giving rise to the two functions

fpi (w) = Ez∼pi [ℓ(w , z)] =
1 + iδ

2
G |w − D|+ 1− iδ

2
G |w + D|, i ∈ {1,−1} (375)

• Both functions are convex and G -Lipschitz and also w∗
i = iD implying |w∗

i | = D

• Functions becomes harder to distinguish as δ gets smaller
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Construction of Loss functions (Cont’d)
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• We consider the natural choice gt = G · sign(wt − ztD) for the stochastic gradients by noting
sign(w − D) is a (sub)gradient of |w − D|

• It is evident that gt is an unbiased estimator of ∇fi (wt) under zt ∼ pi and
var(gt) ≤ E∥gt∥2 ≤ G 2

• The idea is that since the functions are so similar for small δ, by observing gt we might
mistakenly think they are the stochastic gradient for the other function.

• Despite the similarity of functions and stochastic gradients, the functions are separated in the
sense that if

fpi (ŵ) ≤ fpi (w
∗
i ) + 2GDδ ⇒ fp−i (ŵ) ≤ fp−i (w

∗
−i ) + 2GDδ, i ∈ {1,−1} (376)

• We will use this separation property to reduce optimization to statistical test
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Error of Hypothesis Test and Optimization
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• We observe the sequence of stochastic gradients and use them in our favorite algorithm and we
output pi as the candidate for the initial choice of nature if fpi (ŵ) ≤ fpi (w

∗
i ) + 2GDδ

• Let us denote this test by Te(g1, . . . , gT ) = i

• Recall we showed

RD
T (w) = max

pi∈D
EPT

i
[fpi (w)−min

w
fpi (w)] ≥ Epi∼π

[
EPT

i
[fpi (w)−min

w
fpi (w)]

]
(377)

• By Markov inequality, i.e. Pr(X ≥ λ) ≤ E[X ]λ−1 for X , λ > 0

RD
T (w) ≥ Epi∼π

[
PT
i (fpi (w)−min

w
fpi (w) ≥ 2GDδ)

]
· 2GDδ (378)
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Error of Hypothesis Test and Optimization (Cont’d)
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• Note PT
i (fpi (w)−minw fpi (w) ≥ 2GDδ) is precisely the probability of making an error (failing

the test) via our test Te(g1, . . . , gT ) when g1, . . . , gT are generated according to pi .

• Total probability of error:

Q(Te(g1, . . . , gT ) ̸= i) = π(p1) · PT
1 (Te(g1, . . . , gT ) ̸= 1)

+ π(p−1) · PT
−1(Te(g1, . . . , gT ) ̸= −1)

= Epi∼π

[
PT
i (Te(g1, . . . , gT ) ̸= i)

] (379)

where Q is the joint distribution over the random index i ∈ {−1, 1} and the observed gradients
g1, . . . , gT

• Therefore, we have effectively shown

RD
T (w) ≥ Q(Te(g1, . . . , gT ) ̸= i) · 2GDδ ≥ min

T̃e ∈ set of all Tests
Q(T̃e(g1, . . . , gT ) ̸= i) · 2GDδ

(380)
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• Recall we have set π(p1) = π(p−1) = 0.5.
• Also note PT

i are different probability measures defined on the same sample space
• Further the events corresponding to T̃e(g1, . . . , gT ) ̸= 1 and T̃e(g1, . . . , gT ) ̸= −1 are

complement: any testing procedure maps one region of the sample space A, to 1 and the
complement (Ac) to −1. Thus,

min
T̃e ∈ set of all Tests

Q(T̃e(g1, . . . , gT ) ̸= i)

=
1
2

min
T̃e ∈ set of all Tests

(
PT

1 (T̃e(g1, . . . , gT ) ̸= 1) + PT
−1(T̃e(g1, . . . , gT ) ̸= −1)

)

≡ min
A

1
2

(
PT

1 (A
c) + PT

−1(A)

)
≡ min

A

1
2

(
1− PT

1 (A) + PT
−1(A)

)

≡ 1
2

(
1−max

A
{PT

1 (A)− PT
−1(A)}

)
≡ 1

2
(1− ∥PT

1 − PT
−1∥TV )

(381)
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• Thus, we have established a lower bound on the risk in terms of the separation of our functions
and the joint distributions:

RD
T (w) ≥ GDδ(1− ∥PT

1 − PT
−1∥TV ) (382)

• We then typically upper bound the TV distance with KL divergence via

Pinsker: ∥PT
1 − PT

−1∥TV ≤
√

1
2
Dkl(PT

1 ∥PT
−1) (383)

Bertagnolle-Huber: ∥PT
1 − PT

−1∥TV ≤
√

1− exp(−Dkl(PT
1 ∥PT

−1)) (384)

Tensorization of KL Lemma

Let P[t]
i denote the conditional distribution of gt given g1, . . . , gt−1 when z ∼ pi . Then,

Dkl(PT
1 ∥PT

−1) =
T∑
t=1

EPt−1
1

[Dkl(P[t]
1 ∥P

[t]
−1)] ≤ T max

t=1,...,T
Dkl(P[t]

1 ∥P
[t]
−1) (385)
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Bounding the Minimax Rate with KL (Cont’d)
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• Thus, using KL tensorization our lower bound reduces to

RD
T (w) ≥ GDδ(1−

√
0.5T max

t=1,...,T
Dkl(P[t]

1 ∥P
[t]
−1)) (386)

• Note that for any t, P[t]
i is basically a Bernoulli distribution:

P[t]
1 (z = i) =

1 + iδ

2
, P[t]

−1(z = i) =
1− iδ

2
, i ∈ {−1, 1} (387)

• So, we need to just calculate the KL between two slightly different Bernoulli distributions:

Dkl(P[t]
1 ∥P

[t]
−1) = δ log

1 + δ

1− δ
≤ c1δ

2 (388)

for some c > 1 and δ < 1 (using Taylor approximation of log). Thus,

RD
T (w) ≥ GDδ(1− c2δ

√
T ) ≥ c3

DG√
T

(389)

by setting δ = c4/
√
T for some c2, c3, c4 > 0
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Overparameterization of DL models
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• Modern DL models are overparameterized, that is, if w ∈ Rd denotes the model parameters
and n denotes the number of training data points, then d > n

• Thus, we have more unknowns than knowns and consequently multiple global minima for our
training task

min
w

f (w) =
1
n

n∑
i=1

ℓ(w , zi ) (390)

• Effectively, there are parameters w∗ that can interpolate all samples

w∗ = argmin
w

f (w) =
1
n

n∑
i=1

ℓ(w , zi ) ⇔ w∗ = argmin
w

ℓ(w , zi ), ∀i ∈ {1, . . . , n}

(391)

• Equivalently, ∇f (w∗) = ∇ℓ(w∗, zi ) = 0 which we call the interpolation condition

• We will discuss the impact of overparameterization and interpolation on convergence and
generalization of DL models.
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• Recall, for SGD we showed
E∥∇f (ŵ)∥2 ≲

1
T

+
σ2
√
T

(392)

where σ2 was the variance of the SFO.

• Thanks to interpolation, the variance is not constant, rather decreases as SGD makes progress
towards the optimal solution (free variance reduction)

Proposition

Consider f (w) = 1
n

∑n
i=1 ℓ(w , zi ) and assume each ℓ is L-smooth. Furthermore assume the

interpolation condition holds. Then,

Ei∼U[1,...,n]∥∇ℓ(w , zi )∥2 ≤ 2L(f (w)− f ∗). (393)

That is, the variance of stochastic gradient is bounded by the current suboptimality gap.

• Using this result, one could easily show E∥∇f (ŵ)∥2 ≲ 1
T .
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• Let us calculate the second moment

Ei∼U[1,...,n]∥∇ℓ(w , zi )∥2 =
1
n

n∑
i=1

∥∇ℓ(w , zi )∥2 (394)

• A consequence of L-smoothness is that if w∗
i = argminw ℓ(w , zi )

∥∇ℓ(w , zi )∥2 ≤ 2L(ℓ(w , zi )− ℓ(w∗
i , zi )) (395)

• Thus over all
Ei∼U[1,...,n]∥∇ℓ(w , zi )∥2 ≤ 2L

1
n

n∑
i=1

(ℓ(w , zi )− ℓ(w∗
i , zi )) (396)

• Using interpolation condition we have w∗
i = w∗ for all i. thus, proof is complete by noting the

definition of f .
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• Recall smoothness means

f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+ L

2
∥y − x∥2, ∀x , y ∈ Rd (397)

• Notably, the condition holds for

y∗
x = argmin

y
f (x) + ⟨∇f (x), y − x⟩+ L

2
∥y − x∥2 (398)

• A strongly convex problem. Taking the gradient and setting it to zero

y∗
x = x − 1

L
∇f (x) (399)

• Substituting in smoothness definition and noting f (y∗
x ) ≥ f ∗ = minx f (x) establishes

∥∇f (x)∥2 ≤ 2L(f (x)− f ∗) (400)
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• We showed thanks to interpolation (a property of overparameterized models), SGD-based
method enjoy free variance reduction and converge faster to stationary solutions

• Next, we explore a condition that enables faster convergence to global minima.

• The idea is that the loss landscape along the trajectory of SGD-based methods is typically very
nice such that these methods only converge to global solutions.

• Notably, along the trajectory, in addition to smoothness, gradient domination or the
Polyak-Lojasiewicz (PL) Condition holds:

∥∇f (w)∥2 ≥ 2µ(f (w)− f ∗), µ > 0 (401)

• States all stationary solutions are also global solutions (despite nonconvexity).

• Along with the consequence of smoothness, i.e. ∥∇f (w)∥2 ≤ 2L(f (w)− f ∗) leads to faster
convergence to global minima
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• Assume a learning task such that with n data points zi = (xi , yi ) where yi ∈ R and xi ∈ Rp.

• Consider a parametric DL model h(w , x). Thus, a simple learning problem is

min
w

f (w) ≡ min
w

1
2n

n∑
i=1

(
yi − h(w , xi )

)2
≡ min

w

1
2n
∥y− h(w ,X)∥2 (402)

by defining

y = [y1, . . . , yn]
⊤ ∈ Rn, h(w ,X) = [h(w , x1), . . . , h(w , xn)]

⊤ ∈ Rn (403)

X = [x1, . . . , xn]
⊤ ∈ Rn×p (404)

and noting the definition of Euclidean norm
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PL condition for Overparameterized Models (Cont’d)
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• Let us calculate the gradient of the loss

∇f (w) =
1
n

n∑
i=1

(yi −∇h(w , xi ))∇h(w , xi ) =
1
n
∇h(w ,X) · (y− h(w ,X)) (405)

where ∇h ∈ Rd×n is the gradient of h i.e., the transpose of its Jacobian.

• Let us calculate the norm square next:

∥∇f (w)∥2 = ⟨∇f (w),∇f (w)⟩ = 1
n
(y− h(w ,X))⊤

∇h(w ,X)⊤∇h(w ,X)

n
(y− h(w ,X)) (406)

• The matrix K (w ,X) := ∇h(w ,X)⊤∇h(w ,X)
n ∈ Rn×n is called the tangent kernel and it is a PSD

matrix. Called a kernel since ij entry depends on xi and xj
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PL condition for Overparameterized Models (Cont’d)
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• Let us assume

λmin

(
K (w ,X)

)
= λmin

(∇h(w ,X)⊤∇h(w ,X)

n

)
= µ > 0 (407)

• Note a necessary condition for this is d ≥ n, i.e., overparameterization of our DL model.

• Then,

∥∇f (w)∥2 ≥ µ

n
(y−h(w ,X))⊤(y−h(w ,X)) = 2µ· 1

2n
∥y−h(w ,X)∥2 = 2µf (w) ≥ 2µ(f (w)−f ∗)

(408)
by definition of f and the fact that f (w) ≥ 0 for all w .

• This implies if tangent kernel is well conditioned along the trajectory, PL holds and SGD-based
method converge very fast to global minima.

• Random initialization can ensure with high probability λmin

(
K (w1,X)

)
> 0.

• Thus if the optimization happens near the initialization (e.g., small η and/or L), PL holds for
all wt ’s with high probability.
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• So far we showed the benefits of overparameterization and interpolation in terms of
accelerating the training convergence.

• However, overparameterization can further aid with generalization: performing well on
test/unseen data

• The main idea is that the training problem of overparameterized model enjoys implicit
regularization when solved by SGD-based methods

• Highlighting the crucial role of the methods we talked about, not just in terms of training but
also test performance.

• We will explore this idea for linear models h(w , xi ) = w⊤xi where d = p > n. Our task is:

min
w

f (w) ≡ min
w

1
2n

n∑
i=1

(
yi − w⊤xi

)2
≡ min

w

1
2n
∥y− Xw∥2 (409)

• In this case, K (w ,X) = XX⊤ is independent of model parameters.
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• As the system is underdetermined (due to overparameterization), we can perfectly fit all data
points such that f ∗ = 0

• Assuming the tangent kernel is positive definite, PL holds for w . Furthermore, the loss is
smooth, implying using (S)GD we can find an optimal solution:

lim
t→∞

f (wt) = 0, wt+1 = wt − η∇f (wt), η ≤ 1/L (410)

• Thus, if ŵ = limt→∞ wt , we have that y = Xŵ exactly
• We will then show among all possible solutions w∗, GD’s solution ŵ is the one closest to the

initialization w1, i.e.,

∥w1 − ŵ∥2 ≤ ∥w∗ − w1∥2, ∀w∗ ∈ argmin
w

f (w), w∗ ̸= ŵ (411)

• So, implicitly, GD is solving an ℓ2 regularized problem:

min
w
∥w − w1∥2 s.t. y = Xw ≡ min

w
f (w) +

λ

2
∥w − w1∥2 (412)
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• Range: The range of a matrix X is the set of all vector a that can be written as a linear
combination of columns of X. Notably, any vector a = Xu is in the range of X.

• Null-space: the null-space of a matrix X is the set of all vectors b such that Xb = 0.

• For a matrix X we have that Range(X⊤) and Null(X) are orthogonal:

b ∈ Null(X) ⇔ ProjRange(X⊤)(b) = 0, a ∈ Range(X⊤) ⇔ ProjNull(X)(a) = 0

• For our problem where y = Xw , as d > n, X is a fat matrix and has a non-trivial null-space.

• The vector w̄ = X†y is in the range of X⊤. X† = X⊤(XX⊤)−1 is the pseudo-inverse of X

• The gradient ∇f (w) = 1
nX

⊤(Xw − y) is in the range of X⊤.

• The set of all solutions is

S = {w∗|w∗ = w̄ + b, b ∈ Null(X)} (413)

and notably ProjRange(X⊤)(w
∗) = w̄ for all w∗
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Implicit Regularization in Linear Models (Cont’d)
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• Given the update wt+1 = wt − η∇f (wt) and the fact that ∇f (wt) ∈ Range(X⊤) we can show

ProjNull(X)(ŵ) = ProjNull(X)(wt) = ProjNull(X)(w1), ŵ = lim
t→∞

wt (414)

• Since Range(X⊤) and Null(X) are orthogonal, for any w∗ = w̄ + b ̸= ŵ

∥w∗ − w1∥2 = ∥ProjNull(X)(w
∗)− ProjNull(X)(w1)∥2 + ∥ProjRange(X⊤)(w

∗)− ProjRange(X⊤)(w1)∥2

≥ ∥ProjRange(X⊤)(w
∗)− ProjRange(X⊤)(w1)∥2

= ∥ProjRange(X⊤)(ŵ)− ProjRange(X⊤)(w1)∥2

(b)
= ∥ProjRange(X⊤)(ŵ)− ProjRange(X⊤)(w1)∥2 + ∥ProjNull(X)(ŵ)− ProjNull(X)(w1)∥2

= ∥ŵ − w1∥2
(415)

• Orange term in (b) is zero due to eq. (21)
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• Consider again the general task

min
w

f (w) ≡ min
w

1
2n

n∑
i=1

(
yi − h(w , xi )

)2
≡ min

w

1
2n
∥y− h(w ,X)∥2 (416)

• To apply our previous results, one typically linearizes the model around the initialization w1 to
get a linear model:

hl(w ,X) = h(w1,X) +∇h(w1,X)⊤(w − w1) (417)

• This leads to a linear regression task

min
w

1
n
∥ỹ−∇h(w1,X)⊤(w − w1)∥2, ỹ = y− h(w1,X) ∈ Rn (418)

• Our results then hold for the linearized model. And thanks to overparameterization and using
SGD-based methods with small learning rates, the approximation error is small (e.g. O(n/

√
d)).
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From Supervised Learning to Generative Modeling
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• Recall so far we talked about training tasks of the form

min f (w) = Ez∼q[ℓ(w , z)] (419)

with the hope of finding a model that best fits the training data

• In supervised learning, the implication is that our parametric model A(·,w) learns the unknown
rule between features and labels yi = A∗(xi ) such that ∥A∗(·)− A(·,w)∥ is minimized

• In generative modeling the goal is to learn the data distribution pz or learn the ability to
sample from it.

• If we think of q(·) as the true rule, a natural solution then is to use a parametric distribution
p(·,w) such that it approximates the true rule pz well, i.e. ∥q(·)− p(·,w)∥

• This is precisely the goal of variational inference:

min
w

f (w) = D(q∥p(w)) (420)

for some notion of distance or divergence between distributions, e.g. the KL divergence.
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• f -divergence:
Df (q∥p) = Ep[f (

q

p
)] =

∫
z

p(z)f (
q(z)

p(z)
) · dz (421)

for f being a convex function. Examples include
◦ KL divergence with f (t) = t log t

◦ TV distance with f (t) = 1
2 |t − 1|

◦ Jensen-Shannon Distance (JSD) a symmetrized and smoothed version KL:
DJSD(q∥p) = 1

2DKL(p∥q) + 1
2DKL(q∥p)

• a-Wasserstein distance or Kantorovich–Rubinstein metric:

Wa(q, p) = min
π∈C(q,p)

(
E(z1,z2)∼π∥z1 − z2∥a

) 1
a

(422)

for a ≥ 1 where C (q, p) is the set of all couplings (joint distributions) with marginals q and p.

• Turns out minimizing these is like solving a kind of game
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Generative Adversarial Networks (GANs)
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• pw is good estimator of q if a skilled discriminator cannot distinguish z̃ ∼ pw from z ∼ q

• This suggest building a zero-sum game between two players: one trying to generate fake data
(the generator) and other trying to distinguish fake from real data (the discriminator)
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• Let Dy and Gx be the discriminator and generator with parameters y and x , respectively

min
x

max
y

U(x , y) := Ez∼p[logDy (z)] + EZ∼N (0,I )[log(1− Dy (Gx(Z ))] (423)

• Dy is a binary classier and assigns high score (logDy ) to real data and low score to fake data.

• Gx want to assign a high score to fake data by maximizing log(Dy (Gx(Z ))

• With simple calculation, we can show the best discriminator satisfies:

Dy∗(z) =
q(z)

q(z) + pGx (·)
(424)

• Plugging this into the problem above yields the optimal solution for the generator:

x∗ = argmin
x

2DJSD(q∥pGx )− log 4 (425)

• Thus in equilibrium Dy∗(z) = 0.5 and pGx∗ (z) = q(z)

• So a natural question is can we go from a general f -divergence to a game?
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f-GANs: Variational Representation of f -Divergences
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• For any convex f define it’s Fenchel dual f̃ (which is concave)

f̃ (t̃) = max
t

{
⟨t̃, t⟩ − f (t)

}
, f (t) = max

t̃

{
⟨t, t̃⟩ − f̃ (t̃)

}
(426)

• We can use this to lower bound f -divergences:

Df (q∥p) =
∫
z

p(z)f (
q(z)

p(z)
) · dz =

∫
z

p(z)max
t̃

{q(z)
p(z)

t̃ − f̃ (t̃)
}
· dz

≥ max
t̃

{∫
z

(
p(z)

q(z)

p(z)
t̃ − f̃ (t̃)

)
· dz
}

≥ max
t̃∈T (z)

{∫
z

q(z)t̃(z) · dz −
∫
z

p(z)f̃ (t̃(z)) · dz
}

= max
t̃(z)∈T (z)

Ez∼q[t̃(z)]− Ez∼p[f̃ (t̃(z))]

(427)

where the first inequality is due to Jensen’s inequality and convexity of max while the second
inequality is by restricting the set of all t̃ to a class T of functions of z
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• Let us change t̃(z) to Dy (z) implying our function class is parametric with parameters y :

Df (q∥p) ≥ max
y

Ez∼q[Dy (z)]− Ez∼p[f̃ (Dy (z))] (428)

• Recall we think of q as data distribution and p as its estimator. If we assume p is
parameterized via pG for some function Gx(Z ) taking random Gaussian Z ∼ N (0, I ), fitting q

by minimizing Df (q∥p) amounts to

min
x

max
y

Ez∼q[Dy (z)]− EZ∼N (0,I )[f̃ (Dy (Gx(Z )))] (429)

generalizing GANs from JSD to arbitrary f -divergences.

• The bound is tight for Dy∗(z) = f ′( q(z)p(z) )

• Generator is trying to minimize the divergence estimate, while the discriminator tries to tighten
the lower bound.

• How about a-Wasserstein distance? Any benefit?
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• Recall Df (q∥p) = Ep[f (
q
p )] so the support of p has to cover the support of q. That is if

p(z1) = 0 we like q(z1) = 0 too

• Otherwise discontinuity arises in f -divergences and they could become ∞ (e.g., KL).

• Turns out a-Wasserstein distances are nicer in such scenarios

• Using Kantorovich-Rubinstein duality, we represent this task as a minmax game. For a = 1

W1(q, p) = min
π∈C(q,p)

(
E(z1,z2)∼π∥z1 − z2∥

)
= max

D:∥D∥Lip≤1
Ez∼q[D(z)]− Ez∼p[D(z)] (430)

where ∥D∥Lip ≤ 1 means D must have a Lipschitz constant at most 1

• This idea leads to Wasserstein GAN (WGAN)

min
x

max
y

Ez∼q[Dy (z)]− EZ∼N (0,I )[Dy (Gx(Z ))] (431)

• Lipschitzness is ensured by weight clipping or gradient penalty ∥∇yDy (z)∥
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• Recall we showed for f -GAN training

min
x

max
y

U(x , y) = Ez∼q[Dy (z)]− EZ∼N (0,I )[f̃ (Dy (Gx(Z )))] (432)

• And for WGAN training

min
x

max
y

U(x , y) = Ez∼q[Dy (z)]− EZ∼N (0,I )[Dy (Gx(Z ))] (433)

• Both are minmax optimization. One could use minmax version of (S)GD for training

xt+1 = xt − η∇xU(xt , yt), yt+1 = yt + η∇yU(xt , yt) (434)
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• The issue can be attributed to the fundamental difference between minmax and min problems.

• For minimization we interpreted GD a simple forward Euler discretization of gradient flow

wt+1 = wt − η∇f (wt), ẇ = −∇f (w) (435)

• Let v = [x , y ]⊤ and define F (v) = [∇xU(xt , yt),−∇yU(xt , yt)]
⊤. Minmax GD becomes

vt+1 = vt − ηF (vt), v̇ = −F (v) (436)

• They look very similar, but there is a fundamental difference! ∇f is the gradient of a scalar
function but F is not

• Jacobian of ∇f , J∇f is symmetric (the Hessian ∇2f ) while the Jacobian of F , JF is not

• The Jacobian controls the local dynamics: how the flow F (v) curves, rotates, contracts, or
expands locally.
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• Note JF =
JF+J⊤

F

2 +
JF−J⊤

F

2 , i.e., sum of symmetric and skew-symmetric matrices
• when the flow is ẇ = −∇f (w) there is no skew-symmetric component and under mild

condition the system is dissipating energy.
• When the flow is v̇ = −F (v), the system might conserve energy and the skew-symmetric

component determines the rotation.
• The most simple example is harmonic oscillator

ẅ = −w ≡ ẋ = y , ẏ = −x ≡ v̇ = −F (v) (437)

for which the Jacobian is purely skew-symmetric. It corresponds to the simplest minmax
problem: minx maxy U(x , y) = xy
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• Following the flow might not help in skew-symmetric dynamics
• Simple Euler forward discretization (GD in optimization) converges nicely to a stable point for

dissipative systems while does not work well for conservative systems as it pushes us around
(and potentially away) the stable solution

• Thus, for minmax problems we generally need other classes of method
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• Recall we talked about momentum for min problems. Intuitively, we assume usefulness of
gradient direction and we double down by introducing positive momentum

• For minmax problems, the gradient direction has a mistake and we can correct that by
introducing negative momentum.

• This idea leads to the update vt+1 = vt − ηF (vt+1)

• This is precisely the Euler Backward discretization of the flow and it is generally implicit.
• Also called proximal point method since if F → ∇f for some convex function f

wt+1 = wt − η∇f (wt+1) ≡ wt+1 = argmin
w

f (w) +
1
2η
∥w − wt∥2 (438)
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• Consider the flow

v̇ = −F (v) ≡ vt+1 = vt −
∫ t+1

t

F (vτ ) · dτ (439)

• Forward Euler (GD) approximates

vt+1 = vt −
∫ t+1

t

F (vτ ) · dτ ≈
∫ t+1

t

F (vt) · dτ = vt − ηF (vt) (440)

• Backward Euler (Proximal Point) approximates

vt+1 = vt −
∫ t+1

t

F (vτ ) · dτ ≈
∫ t+1

t

F (vt+1) · dτ = vt − ηF (vt+1) (441)
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Mid-Point Discretization and Extra Gradient (Cont’d)
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• More generally for any u ∈ (t, t + 1) and in particular for u = 1/2 we can do

vt+1 = vt −
∫ t+1

t

F (vτ ) · dτ ≈
∫ t+1

t

F (vt+ 1
2
) · dτ = vt − ηF (vt+ 1

2
) (442)

and find vt+ 1
2

via Forward Euler to obtain an explicit update

vt+1 = vt − ηF (vt+ 1
2
), vt+ 1

2
= vt − ηF (vt) (443)

• Called Extra Gradient (EG), approximates PP by doing F (vt+1) ≈ F (vt − ηF (vt))
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• Consider a field which is Lipschitz, meaning the variations are controlled: F (vt+1) ≈ F (vt).

• This yields GD. We hope to get a tighter approximation by doubling down on our optimism
towards controlled variation of F

• F (vt+1) ≈ F (vt) is effectively the zeroth-order Taylor approximation. Consider the first-order
Taylor approximation instead

F (vt+1) ≈ F (vt) + JF (vt)(vt+1 − vt), JF (vt) ≈
F (vt)− F (vt−1)

∥vt − vt−1∥
· e⊤ (444)

where e = vt−vt−1
∥vt−vt−1∥ is the unit vector along the direction of vt − vt−1

• Let us be optimistic one last time and assume vt+1 − vt ≈ vt − vt−1, leading to

F (vt+1) ≈ F (vt)+
F (vt)− F (vt−1)

∥vt − vt−1∥
(vt − vt−1)

⊤

∥vt − vt−1∥
(vt − vt−1) = F (vt)+F (vt)−F (vt−1) (445)

• This serves as the update vector in Optimistic GD: vt+1 = vt − 2ηF (vt) + ηF (vt−1)
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